Согласовано "лучшую музыку" и "пересчет результатов через параметры настройки" пакетные вставки Р


Я пытаюсь создать модель, используя каретку с сеткой мелодий

SvmGrid

И затем еще раз с подмножеством этой сетки:

SvmGrid

Проблема заключается в том, что я получаю разные" лучшие настройки "и" результаты пересчета по параметрам настройки", хотя значение параметра C, которое было выбрано для первой сетки настройки, также появляется в сетка второй мелодии.

Я также сталкиваюсь с этими расхождениями при использовании различных опций для параметра выборки, а также при использовании различных опций summaryFunction в trainControl()

Нет необходимости говорить, что, поскольку каждый раз выбирается другая лучшая модель, она влияет на результаты прогнозирования на тестовых наборах. У кого-нибудь есть ключ к разгадке, почему это происходит?

Воспроизводимый набор данных:

library(caret)
library(doMC)
registerDoMC(cores = 8)

set.seed(2969)
imbal_train <- twoClassSim(100, intercept = -20, linearVars = 20)
imbal_test  <- twoClassSim(100, intercept = -20, linearVars = 20)
table(imbal_train$Class)

Запуск с использованием первой сетки мелодий

svmGrid <-  expand.grid(C = c(0.0001,0.001,0.01,0.1,1,10,20,30,40,50,100))

up_fitControl = trainControl(method = "cv", number = 10 , savePredictions = TRUE, allowParallel = TRUE, sampling = "up", seeds = NA)


set.seed(5627)
up_inside <- train(Class ~ ., data = imbal_train,
                   method = "svmLinear",
                   trControl = up_fitControl,
                   tuneGrid = svmGrid,
                   scale = FALSE)

up_inside

Вывод первого запуска:

> up_inside
Support Vector Machines with Linear Kernel 

100 samples
 25 predictors
  2 classes: 'Class1', 'Class2' 

No pre-processing
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 90, 91, 90, 90, 89, 90, ... 
Addtional sampling using up-sampling

Resampling results across tuning parameters:

  C      Accuracy   Kappa         Accuracy SD  Kappa SD 
  1e-04  0.7734343   0.252201364  0.1227632    0.3198165
  1e-03  0.8225253   0.396439198  0.1245455    0.3626456
  1e-02  0.7595960   0.116150973  0.1431780    0.3046825
  1e-01  0.7686869   0.051430454  0.1167093    0.2712062
  1e+00  0.7695960  -0.004261294  0.1162279    0.2190151
  1e+01  0.7093939   0.111852756  0.2030250    0.3810059
  2e+01  0.7195960   0.040458804  0.1932690    0.2580560
  3e+01  0.7195960   0.040458804  0.1932690    0.2580560
  4e+01  0.7195960   0.040458804  0.1932690    0.2580560
  5e+01  0.7195960   0.040458804  0.1932690    0.2580560
  1e+02  0.7195960   0.040458804  0.1932690    0.2580560

Accuracy was used to select the optimal model using  the largest value.
The final value used for the model was C = 0.001. 

Запуск с использованием второй сетки мелодий

svmGrid <-  expand.grid(C = c(0.0001,0.001,0.01,0.1,1,10,20,30,40,50))

up_fitControl = trainControl(method = "cv", number = 10 , savePredictions = TRUE, allowParallel = TRUE, sampling = "up", seeds = NA)


set.seed(5627)
up_inside <- train(Class ~ ., data = imbal_train,
                   method = "svmLinear",
                   trControl = up_fitControl,
                   tuneGrid = svmGrid,
                   scale = FALSE)

up_inside

Выход второго запуска:

> up_inside
Support Vector Machines with Linear Kernel 

100 samples
 25 predictors
  2 classes: 'Class1', 'Class2' 

No pre-processing
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 90, 91, 90, 90, 89, 90, ... 
Addtional sampling using up-sampling

Resampling results across tuning parameters:

  C      Accuracy   Kappa         Accuracy SD  Kappa SD 
  1e-04  0.8125253   0.392165694  0.13043060   0.3694786
  1e-03  0.8114141   0.375569633  0.12291273   0.3549978
  1e-02  0.7995960   0.205413345  0.06734882   0.2662161
  1e-01  0.7495960   0.017139266  0.09742161   0.2270128
  1e+00  0.7695960  -0.004261294  0.11622791   0.2190151
  1e+01  0.7093939   0.111852756  0.20302503   0.3810059
  2e+01  0.7195960   0.040458804  0.19326904   0.2580560
  3e+01  0.7195960   0.040458804  0.19326904   0.2580560
  4e+01  0.7195960   0.040458804  0.19326904   0.2580560
  5e+01  0.7195960   0.040458804  0.19326904   0.2580560

Accuracy was used to select the optimal model using  the largest value.
The final value used for the model was C = 1e-04.
1   3  

1 ответ:

Если вы не предоставите семена в caret, он выберет их для вас. Поскольку у вас есть разные длины для вашей сетки, семена будут немного отличаться для ваших складок.

Ниже я вставил пример, где я только что переименовал вашу вторую модель, чтобы легче было получить результат для сравнения:

> up_inside$control$seeds[[1]]
 [1] 825016 802597 128276 935565 324036 188187 284067  58853 923008 995461  60759
> up_inside2$control$seeds[[1]]
 [1] 825016 802597 128276 935565 324036 188187 284067  58853 923008 995461
> up_inside$control$seeds[[2]]
 [1] 966837 256990 592077 291736 615683 390075 967327 349693  73789 155739 916233
# See how the first seed here is the same as the last seed of the first model
> up_inside2$control$seeds[[2]]
 [1]  60759 966837 256990 592077 291736 615683 390075 967327 349693  73789

Если вы сейчас пойдете вперед и установите свои собственные семена, вы получите тот же результат:

# Seeds for your first train
myseeds <- list(c(1:10,1000), c(11:20,2000), c(21:30, 3000),c(31:40, 4000),c(41:50, 5000),
                c(51:60, 6000),c(61:70, 7000),c(71:80, 8000),c(81:90, 9000),c(91:100, 10000), c(343))
# Seeds for your second train
myseeds2 <- list(c(1:10), c(11:20), c(21:30),c(31:40),c(41:50),c(51:60),
                 c(61:70),c(71:80),c(81:90),c(91:100), c(343))

> up_inside
Support Vector Machines with Linear Kernel 

100 samples
 25 predictor
  2 classes: 'Class1', 'Class2' 

No pre-processing
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 90, 91, 90, 90, 89, 90, ... 
Addtional sampling using up-sampling

Resampling results across tuning parameters:

  C      Accuracy   Kappa      
  1e-04  0.7714141  0.239823027
  1e-03  0.7914141  0.332834590
  1e-02  0.7695960  0.207000745
  1e-01  0.7786869  0.103957926
  1e+00  0.7795960  0.006849817
  1e+01  0.7093939  0.111852756
  2e+01  0.7195960  0.040458804
  3e+01  0.7195960  0.040458804
  4e+01  0.7195960  0.040458804
  5e+01  0.7195960  0.040458804
  1e+02  0.7195960  0.040458804

Accuracy was used to select the optimal model using  the largest value.
The final value used for the model was C = 0.001. 
> up_inside2
Support Vector Machines with Linear Kernel 

100 samples
 25 predictor
  2 classes: 'Class1', 'Class2' 

No pre-processing
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 90, 91, 90, 90, 89, 90, ... 
Addtional sampling using up-sampling

Resampling results across tuning parameters:

  C      Accuracy   Kappa      
  1e-04  0.7714141  0.239823027
  1e-03  0.7914141  0.332834590
  1e-02  0.7695960  0.207000745
  1e-01  0.7786869  0.103957926
  1e+00  0.7795960  0.006849817
  1e+01  0.7093939  0.111852756
  2e+01  0.7195960  0.040458804
  3e+01  0.7195960  0.040458804
  4e+01  0.7195960  0.040458804
  5e+01  0.7195960  0.040458804

Accuracy was used to select the optimal model using  the largest value.
The final value used for the model was C = 0.001.