Изменение кода прогнозирования Caffe C++ для нескольких входов


Я реализовал модифицированную версию примера Caffe C++ , и хотя он работает очень хорошо, он невероятно медленный, потому что он принимает только изображения по одному. В идеале я хотел бы передать Caffe вектор из 200 изображений и вернуть лучший прогноз для каждого из них. Я получил некоторуюбольшую помощь от Fanglin Wang и выполнил некоторые из его рекомендаций, но до сих пор испытываю некоторые трудности, работая над тем, как получить лучший результат от каждого изображения.

Метод классификации теперь передается вектор объектов cv::Mat (переменная input_channels), который является вектором изображений с плавающей точкой в оттенках серого. Я исключил метод предварительной обработки в коде, потому что мне не нужно преобразовывать эти изображения в плавающую точку или вычитать среднее изображение. Я также пытался избавиться от переменной N, потому что я хочу только вернуть верхний прогноз и вероятность для каждого изображения.

#include "Classifier.h"
using namespace caffe;
using std::string;

Classifier::Classifier(const string& model_file, const string& trained_file, const string& label_file) {
#ifdef CPU_ONLY
  Caffe::set_mode(Caffe::CPU);
#else
  Caffe::set_mode(Caffe::GPU);
#endif

  /* Load the network. */
  net_.reset(new Net<float>(model_file, TEST));
  net_->CopyTrainedLayersFrom(trained_file);

  Blob<float>* input_layer = net_->input_blobs()[0];
  num_channels_ = input_layer->channels();
  input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

  /* Load labels. */
  std::ifstream labels(label_file.c_str());
  CHECK(labels) << "Unable to open labels file " << label_file;
  string line;
  while (std::getline(labels, line))
    labels_.push_back(string(line));

  Blob<float>* output_layer = net_->output_blobs()[0];
  CHECK_EQ(labels_.size(), output_layer->channels())
    << "Number of labels is different from the output layer dimension.";
}

static bool PairCompare(const std::pair<float, int>& lhs, const std::pair<float, int>& rhs) {
  return lhs.first > rhs.first;
}

/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
  std::vector<std::pair<float, int> > pairs;
  for (size_t i = 0; i < v.size(); ++i)
    pairs.push_back(std::make_pair(v[i], i));
  std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

  std::vector<int> result;
  for (int i = 0; i < N; ++i)
    result.push_back(pairs[i].second);
  return result;
}

/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const std::vector<cv::Mat> &input_channels) {
  std::vector<float> output = Predict(input_channels);

    std::vector<int> maxN = Argmax(output, 1);
    int idx = maxN[0];
    predictions.push_back(std::make_pair(labels_[idx], output[idx]));
    return predictions;
}

std::vector<float> Classifier::Predict(const std::vector<cv::Mat> &input_channels, int num_images) {
  Blob<float>* input_layer = net_->input_blobs()[0];
  input_layer->Reshape(num_images, num_channels_,
                       input_geometry_.height, input_geometry_.width);
  /* Forward dimension change to all layers. */
  net_->Reshape();

  WrapInputLayer(&input_channels);

  net_->ForwardPrefilled();

  /* Copy the output layer to a std::vector */
  Blob<float>* output_layer = net_->output_blobs()[0];
  const float* begin = output_layer->cpu_data();
  const float* end = begin + num_images * output_layer->channels();
  return std::vector<float>(begin, end);
}

/* Wrap the input layer of the network in separate cv::Mat objects (one per channel). This way we save one memcpy operation and we don't need to rely on cudaMemcpy2D. The last preprocessing operation will write the separate channels directly to the input layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
  Blob<float>* input_layer = net_->input_blobs()[0];

  int width = input_layer->width();
  int height = input_layer->height();
  float* input_data = input_layer->mutable_cpu_data();
  for (int i = 0; i < input_layer->channels() * num_images; ++i) {
    cv::Mat channel(height, width, CV_32FC1, input_data);
    input_channels->push_back(channel);
    input_data += width * height;
  }
}

Обновить

Большое Спасибо за вашу помощь Шай, я внес изменения. вы рекомендовали, но, кажется, получаете некоторые странные проблемы компиляции, которые я не могу решить (мне удалось разобраться с некоторыми проблемами).

Вот какие изменения я внес:

Заголовочный Файл:

#ifndef __CLASSIFIER_H__
#define __CLASSIFIER_H__

#include <caffe/caffe.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>


using namespace caffe;  // NOLINT(build/namespaces)
using std::string;

/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;

class Classifier {
 public:
  Classifier(const string& model_file,
             const string& trained_file,
             const string& label_file);

  std::vector< std::pair<int,float> > Classify(const std::vector<cv::Mat>& img);

 private:

  std::vector< std::vector<float> > Predict(const std::vector<cv::Mat>& img, int nImages);

  void WrapInputLayer(std::vector<cv::Mat>* input_channels, int nImages);

  void Preprocess(const std::vector<cv::Mat>& img,
                  std::vector<cv::Mat>* input_channels, int nImages);

 private:
  shared_ptr<Net<float> > net_;
  cv::Size input_geometry_;
  int num_channels_;
  std::vector<string> labels_;
};

#endif /* __CLASSIFIER_H__ */

Файл Класса:

#define CPU_ONLY
#include "Classifier.h"

using namespace caffe;  // NOLINT(build/namespaces)
using std::string;

Classifier::Classifier(const string& model_file,
                       const string& trained_file,
                       const string& label_file) {
#ifdef CPU_ONLY
  Caffe::set_mode(Caffe::CPU);
#else
  Caffe::set_mode(Caffe::GPU);
#endif

  /* Load the network. */
  net_.reset(new Net<float>(model_file, TEST));
  net_->CopyTrainedLayersFrom(trained_file);

  CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
  CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

  Blob<float>* input_layer = net_->input_blobs()[0];
  num_channels_ = input_layer->channels();
  CHECK(num_channels_ == 3 || num_channels_ == 1)
    << "Input layer should have 1 or 3 channels.";
  input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

  /* Load labels. */
  std::ifstream labels(label_file.c_str());
  CHECK(labels) << "Unable to open labels file " << label_file;
  string line;
  while (std::getline(labels, line))
    labels_.push_back(string(line));

  Blob<float>* output_layer = net_->output_blobs()[0];
  CHECK_EQ(labels_.size(), output_layer->channels())
    << "Number of labels is different from the output layer dimension.";
}

static bool PairCompare(const std::pair<float, int>& lhs,
                        const std::pair<float, int>& rhs) {
  return lhs.first > rhs.first;
}

/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
  std::vector<std::pair<float, int> > pairs;
  for (size_t i = 0; i < v.size(); ++i)
    pairs.push_back(std::make_pair(v[i], i));
  std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

  std::vector<int> result;
  for (int i = 0; i < N; ++i)
    result.push_back(pairs[i].second);
  return result;
}

std::vector< std::pair<int,float> > Classifier::Classify(const std::vector<cv::Mat>& img) {
  std::vector< std::vector<float> > output = Predict(img, img.size());

  std::vector< std::pair<int,float> > predictions;
  for ( int i = 0 ; i < output.size(); i++ ) {
    std::vector<int> maxN = Argmax(output[i], 1);
    int idx = maxN[0];
    predictions.push_back(std::make_pair(labels_[idx], output[idx]));
  }
  return predictions;
}

std::vector< std::vector<float> > Classifier::Predict(const std::vector<cv::Mat>& img, int nImages) {
  Blob<float>* input_layer = net_->input_blobs()[0];
  input_layer->Reshape(nImages, num_channels_,
                       input_geometry_.height, input_geometry_.width);
  /* Forward dimension change to all layers. */
  net_->Reshape();

  std::vector<cv::Mat> input_channels;
  WrapInputLayer(&input_channels, nImages);

  Preprocess(img, &input_channels, nImages);

  net_->ForwardPrefilled();

  /* Copy the output layer to a std::vector */

  Blob<float>* output_layer = net_->output_blobs()[0];
  std::vector <std::vector<float> > ret;
  for (int i = 0; i < nImages; i++) {
    const float* begin = output_layer->cpu_data() + i*output_layer->channels();
    const float* end = begin + output_layer->channels();
    ret.push_back( std::vector<float>(begin, end) );
  }
  return ret;
}

/* Wrap the input layer of the network in separate cv::Mat objects
 * (one per channel). This way we save one memcpy operation and we
 * don't need to rely on cudaMemcpy2D. The last preprocessing
 * operation will write the separate channels directly to the input
 * layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels, int nImages) {
  Blob<float>* input_layer = net_->input_blobs()[0];

  int width = input_layer->width();
  int height = input_layer->height();
  float* input_data = input_layer->mutable_cpu_data();
  for (int i = 0; i < input_layer->channels()* nImages; ++i) {
    cv::Mat channel(height, width, CV_32FC1, input_data);
    input_channels->push_back(channel);
    input_data += width * height;
  }
}

void Classifier::Preprocess(const std::vector<cv::Mat>& img,
                            std::vector<cv::Mat>* input_channels, int nImages) {
  for (int i = 0; i < nImages; i++) {
      vector<cv::Mat> channels;
      cv::split(img[i], channels);
      for (int j = 0; j < channels.size(); j++){
           channels[j].copyTo((*input_channels)[i*num_channels_[0]+j]);
      }
  }
}
2 12

2 ответа:

Если я правильно понимаю вашу задачу, вы вводите n изображения, ожидая n пар (label, prob), но получаете только одну такую пару.

Я считаю, что эти модификации должны сделать трюк для вас:
  1. Classifier::Predict должно возвращать vector< vector<float> >, то естьвектор вероятностей на входное изображение. То есть vector размера n векторов размера output_layer->channels():

    std::vector< std::vecot<float> > 
    Classifier::Predict(const std::vector<cv::Mat> &input_channels, 
                        int num_images) {
      // same code here...
    
      /* changes here: Copy the output layer to a std::vector */
      Blob<float>* output_layer = net_->output_blobs()[0];
      std::vector< std::vector<float> > ret;
      for ( int i = 0 ; i < num_images ; i++ ) {
          const float* begin = output_layer->cpu_data() + i*output_layer->channels();
          const float* end = begin + output_layer->channels();
          ret.push_back( std::vector<float>(begin, end) );
      }
      return ret;
    }
    
  2. В Classifier::Classify вам нужно обработать каждый vector<float> через Argmax самостоятельно:

     std::vector< std::pair<int,float> > 
     Classifier::Classify(const std::vector<cv::Mat> &input_channels) {
    
       std::vector< std::vector<float> > output = Predict(input_channels);
    
       std::vector< std::pair<int,float> > predictions;
       for ( int i = 0 ; i < output.size(); i++ ) {
           std::vector<int> maxN = Argmax(output[i], 1);
           int idx = maxN[0];
           predictions.push_back(std::make_pair(labels_[idx], output[idx]));
       }
       return predictions;
     }
    

К сожалению, я не верю, что была реализована параллелизация сетевых прямых проходов. Однако, если вы хотите, вы можете просто реализовать свою собственную оболочку для многократного запуска данных через копии вашей сети, параллельно?

Посмотрите на сколько изображений вы можете передать в Caffe за один раз?

В связанном prototxt все, что вам нужно определить, это

input_shape {
  dim: 64 // num of images
  dim: 1
  dim: 28 // height
  dim: 28 // width
}
Существующая реализация оценивает пакет из 64 изображений, но не обязательно параллельно. Однако при работе на GPU обработка пакета из 64 изображений будет выполняться быстрее, чем 64 пакета с одним изображением.