вменение данных с медианой по дате в R
Мне нужно заменить недостающие значения в поле " шаги "медианой" шагов", вычисленной за этот конкретный день (группа по" дате"), с удаленными значениями NA. Я уже ссылался на этот Поток , но мои значения NA не заменяются. Может кто-нибудь помочь мне выяснить, где я ошибаюсь? Я бы предпочел использовать базовый пакет / таблицу данных / plyr. Набор данных выглядит приблизительно так. вот так: -
steps date interval
1: NA 2012-10-01 0
2: NA 2012-10-01 5
3: NA 2012-10-01 10
4: NA 2012-10-01 15
5: NA 2012-10-01 20
---
17564: NA 2012-11-30 2335
17565: NA 2012-11-30 2340
17566: NA 2012-11-30 2345
17567: NA 2012-11-30 2350
17568: NA 2012-11-30 2355
Структура и сводка набора данных (activity) представлены следующим образом ниже
#str(activity)
Classes ‘data.table’ and 'data.frame': 17568 obs. of 3 variables:
$ steps : int NA NA NA NA NA NA NA NA NA NA ...
$ date : Date, format: "2012-10-01" "2012-10-01" "2012-10-01" ...
$ interval: int 0 5 10 15 20 25 30 35 40 45 ...
#summary(activity)
steps date interval
Min. : 0.00 Min. :2012-10-01 Min. : 0.0
1st Qu.: 0.00 1st Qu.:2012-10-16 1st Qu.: 588.8
Median : 0.00 Median :2012-10-31 Median :1177.5
Mean : 37.38 Mean :2012-10-31 Mean :1177.5
3rd Qu.: 12.00 3rd Qu.:2012-11-15 3rd Qu.:1766.2
Max. :806.00 Max. :2012-11-30 Max. :2355.0
NA's :2304
Вещи, которые я пробовал:
Datatable метод:
activityrepNA<-activity[,steps := ifelse(is.na(steps), median(steps, na.rm=TRUE), steps), by=date]
summary(activityrepNA)
steps date interval
Min. : 0.00 Min. :2012-10-01 Min. : 0.0
1st Qu.: 0.00 1st Qu.:2012-10-16 1st Qu.: 588.8
Median : 0.00 Median :2012-10-31 Median :1177.5
Mean : 37.38 Mean :2012-10-31 Mean :1177.5
3rd Qu.: 12.00 3rd Qu.:2012-11-15 3rd Qu.:1766.2
Max. :806.00 Max. :2012-11-30 Max. :2355.0
NA's :2304
Использование ave
activity$steps[is.na(activity$steps)] <- with(activity, ave(steps,date, FUN = function(x) median(x, na.rm = TRUE)))[is.na(activity$steps)]
> summary(activity)
steps date interval
Min. : 0.00 Min. :2012-10-01 Min. : 0.0
1st Qu.: 0.00 1st Qu.:2012-10-16 1st Qu.: 588.8
Median : 0.00 Median :2012-10-31 Median :1177.5
Mean : 37.38 Mean :2012-10-31 Mean :1177.5
3rd Qu.: 12.00 3rd Qu.:2012-11-15 3rd Qu.:1766.2
Max. :806.00 Max. :2012-11-30 Max. :2355.0
NA's :2304
Попытка ddply
cleandatapls<-ddply(activity,
+ .(as.character(date)),
+ transform,
+ steps=ifelse(is.na(steps), median(steps, na.rm=TRUE), steps))
> summary(cleandatapls)
as.character(date) steps date interval
Length:17568 Min. : 0.00 Min. :2012-10-01 Min. : 0.0
Class :character 1st Qu.: 0.00 1st Qu.:2012-10-16 1st Qu.: 588.8
Mode :character Median : 0.00 Median :2012-10-31 Median :1177.5
Mean : 37.38 Mean :2012-10-31 Mean :1177.5
3rd Qu.: 12.00 3rd Qu.:2012-11-15 3rd Qu.:1766.2
Max. :806.00 Max. :2012-11-30 Max. :2355.0
NA's :2304
Агрегат для вычисления медианы
whynoclean<-aggregate(activity,by=list(activity$date),FUN=median,na.rm=TRUE)
> summary(whynoclean)
Group.1 steps date interval
Min. :2012-10-01 Min. :0 Min. :2012-10-01 Min. :1178
1st Qu.:2012-10-16 1st Qu.:0 1st Qu.:2012-10-16 1st Qu.:1178
Median :2012-10-31 Median :0 Median :2012-10-31 Median :1178
Mean :2012-10-31 Mean :0 Mean :2012-10-31 Mean :1178
3rd Qu.:2012-11-15 3rd Qu.:0 3rd Qu.:2012-11-15 3rd Qu.:1178
Max. :2012-11-30 Max. :0 Max. :2012-11-30 Max. :1178
NA's :8
Редактировать выходные данные для кода с помощью mutate
activity %>% group_by(date) %>% mutate(steps = replace(steps, is.na(steps), median(steps, na.rm = T)))
Source: local data table [17,568 x 3]
steps date interval
1 NA 2012-10-01 0
2 NA 2012-10-01 5
3 NA 2012-10-01 10
4 NA 2012-10-01 15
5 NA 2012-10-01 20
6 NA 2012-10-01 25
7 NA 2012-10-01 30
8 NA 2012-10-01 35
9 NA 2012-10-01 40
10 NA 2012-10-01 45
.. ... ... ...
Обновление:
Стивен Бопре помог мне понять, что мой подход к вменению был ошибочным, поскольку существовали конкретные даты, имеющие только значения NA, которые вызывали проблему, поскольку медиана NA является NA. Использовать другой предлагаемый подход.1 ответ:
Попробуйте:
library(dplyr) df %>% group_by(date) %>% mutate(steps = ifelse(is.na(steps), median(steps, na.rm = T), steps))
Если для данной даты все шаги равны
NA
s, Вы можете заменить их на 0:df %>% group_by(date) %>% mutate(steps = ifelse(all(is.na(steps)), 0, ifelse(is.na(steps), median(steps, na.rm = T), steps)))