Создание копии класса внутри класса


Я хочу цитонизировать код на python, чтобы ускорить код. Ниже вы можете увидеть мою попытку сделать мой класс python понятным для cython:

import numpy as np
cimport numpy as np
ctypedef np.double_t DTYPE_T
cpdef double std_G,v_c
std_G=4.3e-9 # Newton's const   in Mpc (km/s)^2 M_sol^{-1}
v_c = 299792.458 #km/s

cdef extern from "math.h":
    double log(double) nogil
    double sqrt(double) nogil


cdef extern from "gsl/gsl_math.h":
    ctypedef struct gsl_function:
        double (* function) (double x, void * params)
        void * params

cdef extern from "gsl/gsl_integration.h":
    ctypedef struct gsl_integration_workspace
    gsl_integration_workspace *  gsl_integration_workspace_alloc(size_t n)
    void  gsl_integration_workspace_free(gsl_integration_workspace * w)
    int  gsl_integration_qags(const gsl_function * f, double a, double b, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr)

cdef double do_callback(double x, void* params): 
     return (<ComovingDistMemoization>params).eval(x) 


cdef class ComovingDistMemoization(object):
     cdef list _memotable
     cdef cosmolgy
     def __cinit__(self, cosmology, memotable = None):

         if memotable is None:
            self._memotable = []

         self._memotable = memotable
         self.cosmology = cosmology
     def __call__(self, double z):


        if z in self._memotable:
            return self._memotable[z]

        def eval(z):

            return 1./sqrt(self.cosmology.hubble2(z))
        cdef gsl_integration_workspace* w =gsl_integration_workspace_alloc(1000)
        cdef gsl_function F            

        F.function = &do_callback 
        F.params = <void*>self 
        cdef double result = 3, error = 5
        cdef double y, err, dist
        gsl_integration_qags (&F, 0, z, 0, 1e-7, 1000, w, &result, &error) 
        y, err = result, error 

        gsl_integration_workspace_free(w) 

        dist = self.cosmology.v_c * y  #to get proper units, ie to put in the hubble length

        self._memotable[z] = dist

        return dist


cdef class cosmology(object):
    cdef comovingdist
    cdef public double omega_m, omega_l, h, w, omega_r, G, v_c
    cdef double H0, hubble_length
    def __init__(self, omega_m = 0.3, omega_l = 0.7, h = 0.7, w = -1, omega_r = 0., G = std_G):

        self.omega_m = omega_m
        self.omega_l = omega_l
        self.omega_r = omega_r
        self.h = h
        self.w = w
        self.G = G
        self.v_c = v_c

        self.comovingdist = ComovingDistMemoization(self)
    def __copy__(self):

        return cosmology(omega_m = self.omega_m, omega_l = self.omega_l, h = self.h, w = self.w, omega_r = self.omega_r, G = self.G)

    property H0:
       def __get__(self):
           return 100*self.h  #km/s/MPC

    def hubble2(self, double z):
        cdef double inv_a
        inv_a = 1.+z
        return (self.omega_r*inv_a**4 + self.omega_m*inv_a**3 + 
                  self.omega_l*(inv_a**(3*(1+self.w))) + (1 - self.omega_m - self.omega_l - self.omega_r)*inv_a**2)*self.H0**2

    property hubble_length:
        def __get__(self):
            return self.v_c / self.H0

    def rho_crit(self, double z):
        return 3.*self.hubble2(z)/(8*np.pi*self.G)


    def angulardist(self, double z, double z2 = None):

        if z2 is None:
            return self.comovingdist(z) / (1+z)

        return (self.comovingdist(z2) - self.comovingdist(z)) / (1+z2)

Однако одно из мест, которое вызывает ошибку, и я не смог найти до сих пор никакой замены, и мое исследование просто дошло до того, что функция __copy__(self) не поддерживается cython. Первый вопрос: Как я могу сделать копию одного метода class в cython? Я читал, что с помощью pickle.Pickler можно обеспечить подстановка для экземпляра класса, но я не знаю, как он должен производить copy класса внутри класса?? Обновление: Правильно ли заменить __copy__ следующим фрагментом кода:

def __reduce__(self):
    return (self.__class__, (), self.__getstate__())
def __getstate__(self):
    return (self.omega_m, self.omega_l, self.omega_r, self.h, self.w, self.G, self.v_c)
def __setstate__(self, data):
    (self.omega_m, self.omega_l, self.omega_r, self.h, self.w, self.G, self.v_c) = data

Мой второй вопрос касается property, определил ли я свойство в cython или мне также нужно иметь функцию __set__?

Мой последний вопрос: когда я вызываю все экземпляры класса cosmology с помощью ComovingDistMemoization, они возвращают ноль. Я задаюсь вопросом, является ли путь, который я призвал экземпляр cosmology класса в ComovingDistMemoization классе и наоборот вызвал проблему и не может передать информацию между ними ?
2 4

2 ответа:

Отвечая на ваш второй вопрос, в вашем случае вам не нужна функция __set__, и, похоже, есть ошибка в том, как вы используете концепцию __get__. Получаемое имя атрибута должно быть задано следующим образом:

def get_H0(self):
   return 100*self.h  #km/s/MPC
H0 = property(fget=get_H0)

def get_hubble_length(self):
    return self.v_c / self.H0
hubble_length = property(fget=get_hubble_length)

EDIT: я не знал, что @property нельзя использовать с Cython

Лучший способ-объединить класс cosmology с классом ComovingDistMemoization и записать второй класс в качестве метода для первого. Я переименовал этот класс в функцию comovingdist для класса cosmology.

cdef extern from "gsl/gsl_math.h":
    ctypedef struct gsl_function:
        double (* function) (double x, void * params)
        void * params

cdef extern from "gsl/gsl_integration.h":
    ctypedef struct gsl_integration_workspace
    gsl_integration_workspace *  gsl_integration_workspace_alloc(size_t n)
    void  gsl_integration_workspace_free(gsl_integration_workspace * w)
    int  gsl_integration_qags(const gsl_function * f, double a, double b, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr)

cdef double do_callback(double x, void* params): 
     return (<cosmology>params).eval(x) 

cdef class cosmology(object):
    cdef public double omega_m, omega_l, h, w, omega_r, G, v_c
    def __init__(self,double omega_m = 0.3, double omega_l = 0.7, double h = 0.7, double w = -1, double omega_r = 0., double G = std_G):

        self.omega_m = omega_m
        self.omega_l = omega_l
        self.omega_r = omega_r
        self.h = h
        self.w = w
        self.G = G
        self.v_c = v_c

    def __copy__(self):

        return cosmology(omega_m = self.omega_m, omega_l = self.omega_l, h = self.h, w = self.w, omega_r = self.omega_r, G = self.G)

    property H0:
       def __get__(self):
           return 100*self.h  #km/s/MPC

    def hubble2(self, double z):
        cdef double inv_a
        inv_a = 1.+z
        return (self.omega_r*inv_a**4 + self.omega_m*inv_a**3 + \
                  self.omega_l*(inv_a**(3*(1+self.w))) + (1 - self.omega_m - self.omega_l - self.omega_r)*inv_a**2)*self.H0**2

    property hubble_length:
        def __get__(self):
            return self.v_c / self.H0

    cpdef double eval(self, double z):
         return 1./sqrt(self.hubble2(z))

    def comovingdist(self, double z):
        cdef gsl_integration_workspace* w =gsl_integration_workspace_alloc(1000)

        cdef gsl_function F
        F.function = &do_callback
        F.params = <void*>self

        cdef double result = 3, error = 5
        cdef double y, err, dist
        gsl_integration_qags(&F, 0, z, 0, 1e-7, 1000, w, &result, &error)
        y, err = result, error 

        gsl_integration_workspace_free(w) 

        dist = self.v_c * y  #to get proper units, ie to put in the hubble length

        return dist


    def rho_crit(self, double z):
        return 3.*self.hubble2(z)/(8*np.pi*self.G)


    def angulardist(self, z, z2=None):
        if z2 is None:
            return self.comovingdist(z) / (1+z)
        return (self.comovingdist(z2) - self.comovingdist(z)) / (1+z2)

    def beta(self, z, zcluster):

        Ds = np.array([self.angulardist(zi) for zi in z])
        Dls = np.array([self.angulardist(zcluster, zi) for zi in z])

        Dls_over_Ds = np.zeros_like(Dls)
        Dls_over_Ds[Ds > 0] = Dls[Ds > 0] / Ds[Ds > 0]
        Dls_over_Ds[Dls <= 0] = 0

        return Dls_over_Ds


    def beta_s(self, z, zcluster):

        betainf = self.beta([1e6], zcluster)

        beta_s = self.beta(z, zcluster) / betainf

        return beta_s


    def RhoCrit_over_SigmaC(self,z, zcluster):

        Dl = self.angulardist(zcluster)
        r= (4*np.pi*self.G)*self.rho_crit(zcluster)*self.beta( z, zcluster )*Dl/self.v_c**2
        return r