Вывод разницы в двух кадрах данных Pandas бок о бок-выделение разницы


Я пытаюсь выделить именно то, что изменилось между двумя таблиц данных.

Предположим, у меня есть два фрейма данных Python Pandas:

"StudentRoster Jan-1":
id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.11                     False                Graduated
113  Zoe    4.12                     True       

"StudentRoster Jan-2":
id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.21                     False                Graduated
113  Zoe    4.12                     False                On vacation

моя цель-вывести таблицу HTML, которая:

  1. определяет строки, которые изменились (может быть int, float, boolean, string)
  2. выводит строки с одинаковыми, старыми и новыми значениями (в идеале в таблицу HTML), чтобы потребитель мог четко видеть, что изменилось между двумя кадрами данных:

    "StudentRoster Difference Jan-1 - Jan-2":  
    id   Name   score                    isEnrolled           Comment
    112  Nick   was 1.11| now 1.21       False                Graduated
    113  Zoe    4.12                     was True | now False was "" | now   "On   vacation"
    

Я полагаю, что я мог бы сделать сравнение строк и столбцов по столбцам, но есть ли более простой способ?

11 83

11 ответов:

первая часть похожа на Константина, вы можете получить логическое значение из строки пусты*:

In [21]: ne = (df1 != df2).any(1)

In [22]: ne
Out[22]:
0    False
1     True
2     True
dtype: bool

затем мы можем видеть, какие записи изменились:

In [23]: ne_stacked = (df1 != df2).stack()

In [24]: changed = ne_stacked[ne_stacked]

In [25]: changed.index.names = ['id', 'col']

In [26]: changed
Out[26]:
id  col
1   score         True
2   isEnrolled    True
    Comment       True
dtype: bool

здесь первая запись-это индекс, а вторая-столбцы, которые были изменены.

In [27]: difference_locations = np.where(df1 != df2)

In [28]: changed_from = df1.values[difference_locations]

In [29]: changed_to = df2.values[difference_locations]

In [30]: pd.DataFrame({'from': changed_from, 'to': changed_to}, index=changed.index)
Out[30]:
               from           to
id col
1  score       1.11         1.21
2  isEnrolled  True        False
   Comment     None  On vacation

* Примечание: важно, чтобы df1 и df2 поделитесь тем же индексом здесь. Чтобы преодолеть эту двусмысленность, вы можете убедиться, что смотрите только на общие метки с помощью df1.index & df2.index, но я думаю, что оставлю это как упражнение.

выделение разницы между двумя кадрами данных

можно использовать свойство стиля фрейма данных, чтобы выделить цвет фона ячеек, где есть разница.

используя пример данных из исходного вопроса

первым шагом является объединение фреймов данных по горизонтали с concat функция и различать каждый кадр с keys параметр:

df_all = pd.concat([df.set_index('id'), df2.set_index('id')], 
                   axis='columns', keys=['First', 'Second'])
df_all

enter image description here

вероятно, проще поменять местами уровни столбцов и поместить одни и те же имена столбцов рядом друг с другом:

df_final = df_all.swaplevel(axis='columns')[df.columns[1:]]
df_final

enter image description here

теперь, его гораздо легче обнаружить различия в рамках. Но, мы можем пойти дальше и использовать style свойства, выделите ячейки, которые отличаются. Мы определяем пользовательскую функцию для этого, которую вы можете увидеть в эта часть документация.

def highlight_diff(data, color='yellow'):
    attr = 'background-color: {}'.format(color)
    other = data.xs('First', axis='columns', level=-1)
    return pd.DataFrame(np.where(data.ne(other, level=0), attr, ''),
                        index=data.index, columns=data.columns)

df_final.style.apply(highlight_diff, axis=None)

enter image description here

это выделит ячейки, которые оба имеют пропущенные значения. Вы можете либо заполнить их, либо предоставить дополнительную логику, чтобы они не выделялись.

этот ответ просто расширяет @Andy Hayden, делая его устойчивым к тому, когда числовые поля nan, и обернуть его в функцию.

import pandas as pd
import numpy as np


def diff_pd(df1, df2):
    """Identify differences between two pandas DataFrames"""
    assert (df1.columns == df2.columns).all(), \
        "DataFrame column names are different"
    if any(df1.dtypes != df2.dtypes):
        "Data Types are different, trying to convert"
        df2 = df2.astype(df1.dtypes)
    if df1.equals(df2):
        return None
    else:
        # need to account for np.nan != np.nan returning True
        diff_mask = (df1 != df2) & ~(df1.isnull() & df2.isnull())
        ne_stacked = diff_mask.stack()
        changed = ne_stacked[ne_stacked]
        changed.index.names = ['id', 'col']
        difference_locations = np.where(diff_mask)
        changed_from = df1.values[difference_locations]
        changed_to = df2.values[difference_locations]
        return pd.DataFrame({'from': changed_from, 'to': changed_to},
                            index=changed.index)

Итак, с вашими данными (немного отредактировано, чтобы иметь NaN в столбце score):

import sys
if sys.version_info[0] < 3:
    from StringIO import StringIO
else:
    from io import StringIO

DF1 = StringIO("""id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 "He was late to class"
112  Nick   1.11                     False                "Graduated"
113  Zoe    NaN                     True                  " "
""")
DF2 = StringIO("""id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 "He was late to class"
112  Nick   1.21                     False                "Graduated"
113  Zoe    NaN                     False                "On vacation" """)
df1 = pd.read_table(DF1, sep='\s+', index_col='id')
df2 = pd.read_table(DF2, sep='\s+', index_col='id')
diff_pd(df1, df2)

выход:

                from           to
id  col                          
112 score       1.11         1.21
113 isEnrolled  True        False
    Comment           On vacation

я столкнулся с этой проблемой, но нашел ответ, прежде чем найти этот пост :

на основе ответа unutbu, загрузите свои данные...

import pandas as pd
import io

texts = ['''\
id   Name   score                    isEnrolled                       Date
111  Jack                            True              2013-05-01 12:00:00
112  Nick   1.11                     False             2013-05-12 15:05:23
     Zoe    4.12                     True                                  ''',

         '''\
id   Name   score                    isEnrolled                       Date
111  Jack   2.17                     True              2013-05-01 12:00:00
112  Nick   1.21                     False                                
     Zoe    4.12                     False             2013-05-01 12:00:00''']


df1 = pd.read_fwf(io.BytesIO(texts[0]), widths=[5,7,25,17,20], parse_dates=[4])
df2 = pd.read_fwf(io.BytesIO(texts[1]), widths=[5,7,25,17,20], parse_dates=[4])

...определите ваш diff

import pandas as pd
import io

texts = ['''\
id   Name   score                    isEnrolled                        Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.11                     False                           Graduated
113  Zoe    4.12                     True       ''',

         '''\
id   Name   score                    isEnrolled                        Comment
111  Jack   2.17                     True                 He was late to class
112  Nick   1.21                     False                           Graduated
113  Zoe    4.12                     False                         On vacation''']


df1 = pd.read_fwf(io.BytesIO(texts[0]), widths=[5,7,25,21,20])
df2 = pd.read_fwf(io.BytesIO(texts[1]), widths=[5,7,25,21,20])
df = pd.concat([df1,df2]) 

print(df)
#     id  Name  score isEnrolled               Comment
# 0  111  Jack   2.17       True  He was late to class
# 1  112  Nick   1.11      False             Graduated
# 2  113   Zoe   4.12       True                   NaN
# 0  111  Jack   2.17       True  He was late to class
# 1  112  Nick   1.21      False             Graduated
# 2  113   Zoe   4.12      False           On vacation

df.set_index(['id', 'Name'], inplace=True)
print(df)
#           score isEnrolled               Comment
# id  Name                                        
# 111 Jack   2.17       True  He was late to class
# 112 Nick   1.11      False             Graduated
# 113 Zoe    4.12       True                   NaN
# 111 Jack   2.17       True  He was late to class
# 112 Nick   1.21      False             Graduated
# 113 Zoe    4.12      False           On vacation

def report_diff(x):
    return x[0] if x[0] == x[1] else '{} | {}'.format(*x)

changes = df.groupby(level=['id', 'Name']).agg(report_diff)
print(changes)

печать

                score    isEnrolled               Comment
id  Name                                                 
111 Jack         2.17          True  He was late to class
112 Nick  1.11 | 1.21         False             Graduated
113 Zoe          4.12  True | False     nan | On vacation

Если ваши два фрейма данных имеют одинаковые идентификаторы в них, то выяснить, что изменилось на самом деле довольно легко. Просто делаю frame1 != frame2 даст вам логический фрейм данных, где каждый True - Это данные, которые изменились. Из этого вы можете легко получить индекс каждой измененной строки, выполнив changedids = frame1.index[np.any(frame1 != frame2,axis=1)].

другой подход с использованием concat и drop_duplicates:

import sys
if sys.version_info[0] < 3:
    from StringIO import StringIO
else:
    from io import StringIO
import pandas as pd

DF1 = StringIO("""id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 "He was late to class"
112  Nick   1.11                     False                "Graduated"
113  Zoe    NaN                     True                  " "
""")
DF2 = StringIO("""id   Name   score                    isEnrolled           Comment
111  Jack   2.17                     True                 "He was late to class"
112  Nick   1.21                     False                "Graduated"
113  Zoe    NaN                     False                "On vacation" """)

df1 = pd.read_table(DF1, sep='\s+', index_col='id')
df2 = pd.read_table(DF2, sep='\s+', index_col='id')
#%%
dictionary = {1:df1,2:df2}
df=pd.concat(dictionary)
df.drop_duplicates(keep=False)

выход:

       Name  score isEnrolled      Comment
  id                                      
1 112  Nick   1.11      False    Graduated
  113   Zoe    NaN       True             
2 112  Nick   1.21      False    Graduated
  113   Zoe    NaN      False  On vacation

расширение ответа @cge, что довольно круто для большей читаемости результата:

a[a != b][np.any(a != b, axis=1)].join(DataFrame('a<->b', index=a.index, columns=['a<=>b'])).join(
        b[a != b][np.any(a != b, axis=1)]
        ,rsuffix='_b', how='outer'
).fillna('')

полный демонстрационный пример:

a = DataFrame(np.random.randn(7,3), columns=list('ABC'))
b = a.copy()
b.iloc[0,2] = np.nan
b.iloc[1,0] = 7
b.iloc[3,1] = 77
b.iloc[4,2] = 777

a[a != b][np.any(a != b, axis=1)].join(DataFrame('a<->b', index=a.index, columns=['a<=>b'])).join(
        b[a != b][np.any(a != b, axis=1)]
        ,rsuffix='_b', how='outer'
).fillna('')

после возиться с ответом @journois, я смог заставить его работать с помощью MultiIndex вместо панели из-за группы deprication.

во-первых, создайте некоторые фиктивные данные:

df1 = pd.DataFrame({
    'id': ['111', '222', '333', '444', '555'],
    'let': ['a', 'b', 'c', 'd', 'e'],
    'num': ['1', '2', '3', '4', '5']
})
df2 = pd.DataFrame({
    'id': ['111', '222', '333', '444', '666'],
    'let': ['a', 'b', 'c', 'D', 'f'],
    'num': ['1', '2', 'Three', '4', '6'],
})

затем определите ваш diff функция, в этом случае я буду использовать один из его ответа report_diff остается той же:

def report_diff(x):
    return x[0] if x[0] == x[1] else '{} | {}'.format(*x)

затем я собираюсь объединить данные в Многоиндексный фрейм данных:

df_all = pd.concat(
    [df1.set_index('id'), df2.set_index('id')], 
    axis='columns', 
    keys=['df1', 'df2'],
    join='outer'
)
df_all = df_all.swaplevel(axis='columns')[df1.columns[1:]]

и наконец, я собираюсь применить report_diff вниз по каждой группе столбцов:

df_final.groupby(level=0, axis=1).apply(lambda frame: frame.apply(report_diff, axis=1))

вот результаты:

         let        num
111        a          1
222        b          2
333        c  3 | Three
444    d | D          4
555  e | nan    5 | nan
666  nan | f    nan | 6

и это все!

вот еще один способ с помощью select и merge:

In [6]: # first lets create some dummy dataframes with some column(s) different
   ...: df1 = pd.DataFrame({'a': range(-5,0), 'b': range(10,15), 'c': range(20,25)})
   ...: df2 = pd.DataFrame({'a': range(-5,0), 'b': range(10,15), 'c': [20] + list(range(101,105))})


In [7]: df1
Out[7]:
   a   b   c
0 -5  10  20
1 -4  11  21
2 -3  12  22
3 -2  13  23
4 -1  14  24


In [8]: df2
Out[8]:
   a   b    c
0 -5  10   20
1 -4  11  101
2 -3  12  102
3 -2  13  103
4 -1  14  104


In [10]: # make condition over the columns you want to comapre
    ...: condition = df1['c'] != df2['c']
    ...:
    ...: # select rows from each dataframe where the condition holds
    ...: diff1 = df1[condition]
    ...: diff2 = df2[condition]


In [11]: # merge the selected rows (dataframes) with some suffixes (optional)
    ...: diff1.merge(diff2, on=['a','b'], suffixes=('_before', '_after'))
Out[11]:
   a   b  c_before  c_after
0 -4  11        21      101
1 -3  12        22      102
2 -2  13        23      103
3 -1  14        24      104

вот то же самое из скриншота Jupyter:

enter image description here

ниже реализована функция, которая находит асимметричную разницу между двумя фреймами данных: (На основе установить разницу для панд) Суть: https://gist.github.com/oneryalcin/68cf25f536a25e65f0b3c84f9c118e03

def diff_df(df1, df2, how="left"):
    """
      Find Difference of rows for given two dataframes
      this function is not symmetric, means
            diff(x, y) != diff(y, x)
      however
            diff(x, y, how='left') == diff(y, x, how='right')

      Ref: https://stackoverflow.com/questions/18180763/set-difference-for-pandas/40209800#40209800
    """
    if (df1.columns != df2.columns).any():
        raise ValueError("Two dataframe columns must match")

    if df1.equals(df2):
        return None
    elif how == 'right':
        return pd.concat([df2, df1, df1]).drop_duplicates(keep=False)
    elif how == 'left':
        return pd.concat([df1, df2, df2]).drop_duplicates(keep=False)
    else:
        raise ValueError('how parameter supports only "left" or "right keywords"')

пример:

df1 = pd.DataFrame(d1)
Out[1]: 
                Comment  Name  isEnrolled  score
0  He was late to class  Jack        True   2.17
1             Graduated  Nick       False   1.11
2                         Zoe        True   4.12


df2 = pd.DataFrame(d2)

Out[2]: 
                Comment  Name  isEnrolled  score
0  He was late to class  Jack        True   2.17
1           On vacation   Zoe        True   4.12

diff_df(df1, df2)
Out[3]: 
     Comment  Name  isEnrolled  score
1  Graduated  Nick       False   1.11
2              Zoe        True   4.12

diff_df(df2, df1)
Out[4]: 
       Comment Name  isEnrolled  score
1  On vacation  Zoe        True   4.12

# This gives the same result as above
diff_df(df1, df2, how='right')
Out[22]: 
       Comment Name  isEnrolled  score
1  On vacation  Zoe        True   4.12