Найти кратчайший путь к одному из множества узлов с атрибутом


У меня есть граф networkx, представляющий минимальное связующее дерево из примерно 1 миллиона объектов (вершин). Мне интересно, есть ли эффективный способ найти кратчайший путь между данной вершиной и одной из многих других вершин.

Вот пример графа с меньшим числом вершин (110)

nodes = [(0.0, {'label': 2}) ,
         (1.0, {'label': 2}) ,
         (2.0, {'label': 0}) ,
         (3.0, {'label': 2}) ,
         (4.0, {'label': 2}) ,
         (5.0, {'label': 0}) ,
         (6.0, {'label': 0}) ,
         (7.0, {'label': 2}) ,
         (8.0, {'label': 2}) ,
         (9.0, {'label': 1}) ,
         (10.0, {'label': 0}) ,
         (11.0, {'label': 1}) ,
         (12.0, {'label': 1}) ,
         (13.0, {'label': 0}) ,
         (14.0, {'label': 1}) ,
         (15.0, {'label': 2}) ,
         (16.0, {'label': 1}) ,
         (17.0, {'label': 1}) ,
         (18.0, {'label': 2}) ,
         (19.0, {'label': 2}) ,
         (20.0, {'label': 0}) ,
         (21.0, {'label': 1}) ,
         (22.0, {'label': 1}) ,
         (23.0, {'label': 0}) ,
         (24.0, {'label': 1}) ,
         (25.0, {'label': 2}) ,
         (26.0, {'label': 0}) ,
         (27.0, {'label': 0}) ,
         (28.0, {'label': 1}) ,
         (29.0, {'label': 0}) ,
         (30.0, {'label': 2}) ,
         (31.0, {'label': 1}) ,
         (32.0, {'label': 2}) ,
         (33.0, {'label': 1}) ,
         (34.0, {'label': 1}) ,
         (35.0, {'label': 1}) ,
         (36.0, {'label': 1}) ,
         (37.0, {'label': 2}) ,
         (38.0, {'label': 0}) ,
         (39.0, {'label': 0}) ,
         (40.0, {'label': 2}) ,
         (41.0, {'label': 0}) ,
         (42.0, {'label': 1}) ,
         (43.0, {'label': 0}) ,
         (44.0, {'label': 0}) ,
         (45.0, {'label': 2}) ,
         (46.0, {'label': 0}) ,
         (47.0, {'label': 2}) ,
         (48.0, {'label': 0}) ,
         (49.0, {'label': 1}) ,
         (50.0, {'label': 0}) ,
         (51.0, {'label': 1}) ,
         (52.0, {'label': 2}) ,
         (53.0, {'label': 0}) ,
         (54.0, {'label': 1}) ,
         (55.0, {'label': 1}) ,
         (56.0, {'label': 2}) ,
         (57.0, {'label': 1}) ,
         (58.0, {'label': 1}) ,
         (59.0, {'label': 0}) ,
         (60.0, {'label': 2}) ,
         (61.0, {'label': 1}) ,
         (62.0, {'label': 1}) ,
         (63.0, {'label': 2}) ,
         (64.0, {'label': 0}) ,
         (65.0, {'label': 0}) ,
         (66.0, {'label': 0}) ,
         (67.0, {'label': 0}) ,
         (68.0, {'label': 1}) ,
         (69.0, {'label': 2}) ,
         (70.0, {'label': 0}) ,
         (71.0, {'label': 1}) ,
         (72.0, {'label': 0}) ,
         (73.0, {'label': 2}) ,
         (74.0, {'label': 0}) ,
         (75.0, {'label': 1}) ,
         (76.0, {'label': 1}) ,
         (77.0, {'label': 0}) ,
         (78.0, {'label': 2}) ,
         (79.0, {'label': 2}) ,
         (80.0, {'label': 2}) ,
         (81.0, {'label': 1}) ,
         (82.0, {'label': 2}) ,
         (83.0, {'label': 2}) ,
         (84.0, {'label': 1}) ,
         (85.0, {'label': 0}) ,
         (86.0, {'label': 1}) ,
         (87.0, {'label': 2}) ,
         (88.0, {'label': 1}) ,
         (89.0, {'label': 0}) ,
         (90.0, {'label': 0}) ,
         (91.0, {'label': 2}) ,
         (92.0, {'label': 0}) ,
         (93.0, {'label': 1}) ,
         (94.0, {'label': 1}) ,
         (95.0, {'label': 2}) ,
         (96.0, {'label': 2}) ,
         (97.0, {'label': 0}) ,
         (98.0, {'label': 2}) ,
         (99.0, {'label': 2}) ,
         (100.0, {'label': -1}) ,
         (101.0, {'label': -1}) ,
         (102.0, {'label': 1}) ,
         (103.0, {'label': -1}) ,
         (104.0, {'label': -1}) ,
         (105.0, {'label': -1}) ,
         (106.0, {'label': -1}) ,
         (107.0, {'label': 1}) ,
         (108.0, {'label': 0}) ,
         (109.0, {'label': -1})]
edges = [(0.0, 25.0, {'weight': 1.3788141613435239}) ,
         (0.0, 15.0, {'weight': 1.1948288781935414}) ,
         (1.0, 99.0, {'weight': 2.1024875417678257}) ,
         (1.0, 52.0, {'weight': 1.5298566582843918}) ,
         (2.0, 59.0, {'weight': 1.2222170767316791}) ,
         (3.0, 96.0, {'weight': 0.77235026806254947}) ,
         (3.0, 98.0, {'weight': 0.75540026318653475}) ,
         (3.0, 83.0, {'weight': 0.63745598060956865}) ,
         (4.0, 8.0, {'weight': 1.1460983565815646}) ,
         (5.0, 39.0, {'weight': 0.57882005244148982}) ,
         (6.0, 27.0, {'weight': 0.77903808587705414}) ,
         (6.0, 38.0, {'weight': 0.87763345274858739}) ,
         (7.0, 83.0, {'weight': 1.0592473391743824}) ,
         (7.0, 52.0, {'weight': 1.1650063193499598}) ,
         (8.0, 18.0, {'weight': 0.62985157194068553}) ,
         (8.0, 63.0, {'weight': 0.66061808561292024}) ,
         (9.0, 57.0, {'weight': 0.73138423240527128}) ,
         (9.0, 14.0, {'weight': 0.68690071596776681}) ,
         (10.0, 43.0, {'weight': 1.0938913337235003}) ,
         (11.0, 76.0, {'weight': 1.8066534138474315}) ,
         (11.0, 22.0, {'weight': 1.5814274601380762}) ,
         (12.0, 68.0, {'weight': 0.82964162447510292}) ,
         (12.0, 28.0, {'weight': 0.56687613489965616}) ,
         (13.0, 41.0, {'weight': 0.67883257822079479}) ,
         (13.0, 70.0, {'weight': 0.69594526555853065}) ,
         (13.0, 39.0, {'weight': 0.62690609201673064}) ,
         (14.0, 42.0, {'weight': 0.51384098628821639}) ,
         (15.0, 91.0, {'weight': 0.80363040334950342}) ,
         (15.0, 63.0, {'weight': 0.74055429404201112}) ,
         (16.0, 75.0, {'weight': 0.89225782872169068}) ,
         (16.0, 36.0, {'weight': 0.97796463842832249}) ,
         (16.0, 61.0, {'weight': 1.2426060084547763}) ,
         (17.0, 24.0, {'weight': 0.48569989925661516}) ,
         (17.0, 88.0, {'weight': 0.58411688395739225}) ,
         (17.0, 42.0, {'weight': 0.48569989925661516}) ,
         (18.0, 19.0, {'weight': 0.73750301595928458}) ,
         (18.0, 87.0, {'weight': 0.62985157194068553}) ,
         (19.0, 80.0, {'weight': 0.77740196142918039}) ,
         (20.0, 53.0, {'weight': 1.5817584651620507}) ,
         (21.0, 33.0, {'weight': 1.558483049272277}) ,
         (21.0, 35.0, {'weight': 1.022218339608882}) ,
         (22.0, 93.0, {'weight': 1.4628634684132413}) ,
         (22.0, 101.0, {'weight': 7.494583622053641}) ,
         (23.0, 97.0, {'weight': 0.86085201141197409}) ,
         (23.0, 90.0, {'weight': 1.4629842172999594}) ,
         (23.0, 65.0, {'weight': 0.94746570241498318}) ,
         (24.0, 34.0, {'weight': 0.55323853417352553}) ,
         (25.0, 104.0, {'weight': 4.9839694794161371}) ,
         (26.0, 85.0, {'weight': 1.5024751933287497}) ,
         (26.0, 46.0, {'weight': 1.2053565344116006}) ,
         (27.0, 72.0, {'weight': 0.72860577250944303}) ,
         (27.0, 92.0, {'weight': 0.74002007166874428}) ,
         (28.0, 54.0, {'weight': 0.55323853417352553}) ,
         (29.0, 50.0, {'weight': 0.81426784351619774}) ,
         (30.0, 98.0, {'weight': 0.77235026806254947}) ,
         (30.0, 78.0, {'weight': 0.79413937142096647}) ,
         (30.0, 95.0, {'weight': 0.78901093530213129}) ,
         (31.0, 68.0, {'weight': 0.98851671776185412}) ,
         (32.0, 95.0, {'weight': 0.8579399666494596}) ,
         (34.0, 54.0, {'weight': 0.55323853417352553}) ,
         (34.0, 55.0, {'weight': 0.60906522381767525}) ,
         (35.0, 62.0, {'weight': 0.66697239833732958}) ,
         (36.0, 93.0, {'weight': 1.2932994772208264}) ,
         (37.0, 80.0, {'weight': 0.85527462610640648}) ,
         (37.0, 96.0, {'weight': 0.85527462610640648}) ,
         (38.0, 46.0, {'weight': 0.95334944284759993}) ,
         (39.0, 50.0, {'weight': 0.52028039541706872}) ,
         (40.0, 69.0, {'weight': 1.7931323073700682}) ,
         (42.0, 62.0, {'weight': 0.51384098628821639}) ,
         (42.0, 81.0, {'weight': 0.5466147583189902}) ,
         (43.0, 65.0, {'weight': 1.0581157274507453}) ,
         (44.0, 108.0, {'weight': 3.0598509599260266}) ,
         (44.0, 70.0, {'weight': 1.0805691635112824}) ,
         (45.0, 56.0, {'weight': 1.3420236519319457}) ,
         (45.0, 79.0, {'weight': 1.6201017824952586}) ,
         (46.0, 53.0, {'weight': 1.070516213146298}) ,
         (47.0, 78.0, {'weight': 1.2822937333699174}) ,
         (47.0, 103.0, {'weight': 3.9053251231648707}) ,
         (48.0, 97.0, {'weight': 0.86085201141197409}) ,
         (48.0, 67.0, {'weight': 0.75656062694199944}) ,
         (49.0, 94.0, {'weight': 1.6216528905308547}) ,
         (49.0, 86.0, {'weight': 0.80157999082131093}) ,
         (49.0, 62.0, {'weight': 0.7081136236724922}) ,
         (51.0, 102.0, {'weight': 1.4704389417937378}) ,
         (51.0, 71.0, {'weight': 0.83506431983724716}) ,
         (54.0, 75.0, {'weight': 0.70074754481170742}) ,
         (55.0, 58.0, {'weight': 0.78571631647476448}) ,
         (56.0, 82.0, {'weight': 1.3387438494166808}) ,
         (57.0, 84.0, {'weight': 1.558483049272277}) ,
         (59.0, 64.0, {'weight': 1.0416266944398496}) ,
         (60.0, 98.0, {'weight': 1.2534403896544031}) ,
         (63.0, 73.0, {'weight': 0.83646303763566465}) ,
         (64.0, 72.0, {'weight': 0.8620326535711742}) ,
         (66.0, 77.0, {'weight': 0.79981721989351606}) ,
         (67.0, 72.0, {'weight': 0.74002007166874428}) ,
         (69.0, 83.0, {'weight': 1.5000235782351021}) ,
         (70.0, 77.0, {'weight': 0.75999034076724692}) ,
         (71.0, 88.0, {'weight': 0.66450874893016454}) ,
         (74.0, 97.0, {'weight': 0.8743417572549379}) ,
         (76.0, 107.0, {'weight': 2.0300278349030831}) ,
         (77.0, 89.0, {'weight': 0.75999034076724692}) ,
         (79.0, 106.0, {'weight': 4.5661761296968333}) ,
         (82.0, 95.0, {'weight': 1.083633962514291}) ,
         (84.0, 99.0, {'weight': 2.1024875417678257}) ,
         (89.0, 92.0, {'weight': 0.75419548272456249}) ,
         (100.0, 107.0, {'weight': 2.9259491743365307}) ,
         (101.0, 109.0, {'weight': 7.6747981730730297}) ,
         (102.0, 108.0, {'weight': 4.3128725576385092}) ,
         (104.0, 105.0, {'weight': 7.5515191839631273})]
G2 = nx.Graph()
G2.add_nodes_from(nodes)
G2.add_edges_from(edges)

Я хочу, чтобы "какая вершина, имеющая метку >= 0, была ближе к каждой из вершин с меткой = -1". С небольшим графом, подобным этому, подход грубой силы с использованием что-то вроде nx.all_pairs_dijkstra_path_length(), а затем проверка меток работает нормально, но она не масштабируется до очень больших графиков. Существуют ли более эффективные алгоритмы, особенно если они встроены в networkx, которые я мог бы использовать?

Обновление:

Я использовал превосходное предложение Ричарда и комментарий ниже, чтобы написать это. Что мне на самом деле нужно, так это множество ярлыков, которые, я думаю, сделали вещи менее грязными, чем Ричард упоминал в networkx. Вся повторная маркировка заняла 45 секунд на наборе данных, что заняло час. грубой силой!
def relabel(G, indices_to_relabel):
    """ 
    Update the anomaly labels to be the closest cluster.
    """
    # Add a "special" node that has zero weight to all the cluster nodes
    print('Adding special node')
    G.add_node('special', {'label': 'special'})
    special_edges = [(n, 'special', {'weight': 0}) 
                     for n, ndat in G.nodes_iter(data=True) 
                     if ndat['label'] != 'special' and ndat['label'] >= 0]
    G.add_edges_from(special_edges)

    print('Calculating path from special node to all other nodes')
    paths = nx.shortest_path(G, source='special', target=None, weight='weight')

    print('Updating labels')
    new_labels = np.array([ndat['label'] for _, ndat in G.nodes_iter(data=True)])
    new_labels[indices_to_relabel] = [G.node[paths[n][1]]['label'] for n in indices_to_relabel]

    # Clean up
    G.remove_node('special')
    return new_labels
3 3

3 ответа:

Я не думаю, что есть такой алгоритм, встроенный в networkx, но кажется, что было бы разумно иметь алгоритм, который расширяет наименее затратный путь, пока не будет достигнуто условие. Однако, несмотря на то, что networkx не включает в себя такую возможность, довольно легко построить алгоритм для этого.

  • вызовите узлы с label==-1 исходными узлами.
  • назовите узел с label>=0, который находится ближе всего к исходному узлу, его целевым узлом. Наша цель-найти цель. узлы.
  • Создайте новый узел. Это будет специальный узел .
  • соедините все потенциальные целевые узлы со специальным узлом с ребрами веса 0.
  • для каждого исходного узла найдите кратчайший путь к специальному узлу. Предпоследний узел на этом пути обязательно является целевым узлом и является ближайшим к исходному узлу.
  • Когда закончите, удалите специальный узел и все его соединительные кромки.

Если число исходных узлов равно S , этот алгоритм выполняется в O(S(|E|+|V| log |V|)) времени (предполагая, что алгоритм кратчайшего пути-это Дейкстра).

(Возможно, я неправильно понял, хотите ли вы, чтобы -1 был ближе к >=0 или >=0 был ближе к -1. Если у меня есть, просто инвертируйте маркировку источника/цели.)

#!/usr/bin/env python3

import networkx as nx

nodes = [(0.0, {'label': 2}) ,
         (1.0, {'label': 2}) ,
         (2.0, {'label': 0}) ,
         (3.0, {'label': 2}) ,
         (4.0, {'label': 2}) ,
         (5.0, {'label': 0}) ,
         (6.0, {'label': 0}) ,
         (7.0, {'label': 2}) ,
         (8.0, {'label': 2}) ,
         (9.0, {'label': 1}) ,
         (10.0, {'label': 0}) ,
         (11.0, {'label': 1}) ,
         (12.0, {'label': 1}) ,
         (13.0, {'label': 0}) ,
         (14.0, {'label': 1}) ,
         (15.0, {'label': 2}) ,
         (16.0, {'label': 1}) ,
         (17.0, {'label': 1}) ,
         (18.0, {'label': 2}) ,
         (19.0, {'label': 2}) ,
         (20.0, {'label': 0}) ,
         (21.0, {'label': 1}) ,
         (22.0, {'label': 1}) ,
         (23.0, {'label': 0}) ,
         (24.0, {'label': 1}) ,
         (25.0, {'label': 2}) ,
         (26.0, {'label': 0}) ,
         (27.0, {'label': 0}) ,
         (28.0, {'label': 1}) ,
         (29.0, {'label': 0}) ,
         (30.0, {'label': 2}) ,
         (31.0, {'label': 1}) ,
         (32.0, {'label': 2}) ,
         (33.0, {'label': 1}) ,
         (34.0, {'label': 1}) ,
         (35.0, {'label': 1}) ,
         (36.0, {'label': 1}) ,
         (37.0, {'label': 2}) ,
         (38.0, {'label': 0}) ,
         (39.0, {'label': 0}) ,
         (40.0, {'label': 2}) ,
         (41.0, {'label': 0}) ,
         (42.0, {'label': 1}) ,
         (43.0, {'label': 0}) ,
         (44.0, {'label': 0}) ,
         (45.0, {'label': 2}) ,
         (46.0, {'label': 0}) ,
         (47.0, {'label': 2}) ,
         (48.0, {'label': 0}) ,
         (49.0, {'label': 1}) ,
         (50.0, {'label': 0}) ,
         (51.0, {'label': 1}) ,
         (52.0, {'label': 2}) ,
         (53.0, {'label': 0}) ,
         (54.0, {'label': 1}) ,
         (55.0, {'label': 1}) ,
         (56.0, {'label': 2}) ,
         (57.0, {'label': 1}) ,
         (58.0, {'label': 1}) ,
         (59.0, {'label': 0}) ,
         (60.0, {'label': 2}) ,
         (61.0, {'label': 1}) ,
         (62.0, {'label': 1}) ,
         (63.0, {'label': 2}) ,
         (64.0, {'label': 0}) ,
         (65.0, {'label': 0}) ,
         (66.0, {'label': 0}) ,
         (67.0, {'label': 0}) ,
         (68.0, {'label': 1}) ,
         (69.0, {'label': 2}) ,
         (70.0, {'label': 0}) ,
         (71.0, {'label': 1}) ,
         (72.0, {'label': 0}) ,
         (73.0, {'label': 2}) ,
         (74.0, {'label': 0}) ,
         (75.0, {'label': 1}) ,
         (76.0, {'label': 1}) ,
         (77.0, {'label': 0}) ,
         (78.0, {'label': 2}) ,
         (79.0, {'label': 2}) ,
         (80.0, {'label': 2}) ,
         (81.0, {'label': 1}) ,
         (82.0, {'label': 2}) ,
         (83.0, {'label': 2}) ,
         (84.0, {'label': 1}) ,
         (85.0, {'label': 0}) ,
         (86.0, {'label': 1}) ,
         (87.0, {'label': 2}) ,
         (88.0, {'label': 1}) ,
         (89.0, {'label': 0}) ,
         (90.0, {'label': 0}) ,
         (91.0, {'label': 2}) ,
         (92.0, {'label': 0}) ,
         (93.0, {'label': 1}) ,
         (94.0, {'label': 1}) ,
         (95.0, {'label': 2}) ,
         (96.0, {'label': 2}) ,
         (97.0, {'label': 0}) ,
         (98.0, {'label': 2}) ,
         (99.0, {'label': 2}) ,
         (100.0, {'label': -1}) ,
         (101.0, {'label': -1}) ,
         (102.0, {'label': 1}) ,
         (103.0, {'label': -1}) ,
         (104.0, {'label': -1}) ,
         (105.0, {'label': -1}) ,
         (106.0, {'label': -1}) ,
         (107.0, {'label': 1}) ,
         (108.0, {'label': 0}) ,
         (109.0, {'label': -1})]
edges = [(0.0, 25.0, {'weight': 1.3788141613435239}) ,
         (0.0, 15.0, {'weight': 1.1948288781935414}) ,
         (1.0, 99.0, {'weight': 2.1024875417678257}) ,
         (1.0, 52.0, {'weight': 1.5298566582843918}) ,
         (2.0, 59.0, {'weight': 1.2222170767316791}) ,
         (3.0, 96.0, {'weight': 0.77235026806254947}) ,
         (3.0, 98.0, {'weight': 0.75540026318653475}) ,
         (3.0, 83.0, {'weight': 0.63745598060956865}) ,
         (4.0, 8.0, {'weight': 1.1460983565815646}) ,
         (5.0, 39.0, {'weight': 0.57882005244148982}) ,
         (6.0, 27.0, {'weight': 0.77903808587705414}) ,
         (6.0, 38.0, {'weight': 0.87763345274858739}) ,
         (7.0, 83.0, {'weight': 1.0592473391743824}) ,
         (7.0, 52.0, {'weight': 1.1650063193499598}) ,
         (8.0, 18.0, {'weight': 0.62985157194068553}) ,
         (8.0, 63.0, {'weight': 0.66061808561292024}) ,
         (9.0, 57.0, {'weight': 0.73138423240527128}) ,
         (9.0, 14.0, {'weight': 0.68690071596776681}) ,
         (10.0, 43.0, {'weight': 1.0938913337235003}) ,
         (11.0, 76.0, {'weight': 1.8066534138474315}) ,
         (11.0, 22.0, {'weight': 1.5814274601380762}) ,
         (12.0, 68.0, {'weight': 0.82964162447510292}) ,
         (12.0, 28.0, {'weight': 0.56687613489965616}) ,
         (13.0, 41.0, {'weight': 0.67883257822079479}) ,
         (13.0, 70.0, {'weight': 0.69594526555853065}) ,
         (13.0, 39.0, {'weight': 0.62690609201673064}) ,
         (14.0, 42.0, {'weight': 0.51384098628821639}) ,
         (15.0, 91.0, {'weight': 0.80363040334950342}) ,
         (15.0, 63.0, {'weight': 0.74055429404201112}) ,
         (16.0, 75.0, {'weight': 0.89225782872169068}) ,
         (16.0, 36.0, {'weight': 0.97796463842832249}) ,
         (16.0, 61.0, {'weight': 1.2426060084547763}) ,
         (17.0, 24.0, {'weight': 0.48569989925661516}) ,
         (17.0, 88.0, {'weight': 0.58411688395739225}) ,
         (17.0, 42.0, {'weight': 0.48569989925661516}) ,
         (18.0, 19.0, {'weight': 0.73750301595928458}) ,
         (18.0, 87.0, {'weight': 0.62985157194068553}) ,
         (19.0, 80.0, {'weight': 0.77740196142918039}) ,
         (20.0, 53.0, {'weight': 1.5817584651620507}) ,
         (21.0, 33.0, {'weight': 1.558483049272277}) ,
         (21.0, 35.0, {'weight': 1.022218339608882}) ,
         (22.0, 93.0, {'weight': 1.4628634684132413}) ,
         (22.0, 101.0, {'weight': 7.494583622053641}) ,
         (23.0, 97.0, {'weight': 0.86085201141197409}) ,
         (23.0, 90.0, {'weight': 1.4629842172999594}) ,
         (23.0, 65.0, {'weight': 0.94746570241498318}) ,
         (24.0, 34.0, {'weight': 0.55323853417352553}) ,
         (25.0, 104.0, {'weight': 4.9839694794161371}) ,
         (26.0, 85.0, {'weight': 1.5024751933287497}) ,
         (26.0, 46.0, {'weight': 1.2053565344116006}) ,
         (27.0, 72.0, {'weight': 0.72860577250944303}) ,
         (27.0, 92.0, {'weight': 0.74002007166874428}) ,
         (28.0, 54.0, {'weight': 0.55323853417352553}) ,
         (29.0, 50.0, {'weight': 0.81426784351619774}) ,
         (30.0, 98.0, {'weight': 0.77235026806254947}) ,
         (30.0, 78.0, {'weight': 0.79413937142096647}) ,
         (30.0, 95.0, {'weight': 0.78901093530213129}) ,
         (31.0, 68.0, {'weight': 0.98851671776185412}) ,
         (32.0, 95.0, {'weight': 0.8579399666494596}) ,
         (34.0, 54.0, {'weight': 0.55323853417352553}) ,
         (34.0, 55.0, {'weight': 0.60906522381767525}) ,
         (35.0, 62.0, {'weight': 0.66697239833732958}) ,
         (36.0, 93.0, {'weight': 1.2932994772208264}) ,
         (37.0, 80.0, {'weight': 0.85527462610640648}) ,
         (37.0, 96.0, {'weight': 0.85527462610640648}) ,
         (38.0, 46.0, {'weight': 0.95334944284759993}) ,
         (39.0, 50.0, {'weight': 0.52028039541706872}) ,
         (40.0, 69.0, {'weight': 1.7931323073700682}) ,
         (42.0, 62.0, {'weight': 0.51384098628821639}) ,
         (42.0, 81.0, {'weight': 0.5466147583189902}) ,
         (43.0, 65.0, {'weight': 1.0581157274507453}) ,
         (44.0, 108.0, {'weight': 3.0598509599260266}) ,
         (44.0, 70.0, {'weight': 1.0805691635112824}) ,
         (45.0, 56.0, {'weight': 1.3420236519319457}) ,
         (45.0, 79.0, {'weight': 1.6201017824952586}) ,
         (46.0, 53.0, {'weight': 1.070516213146298}) ,
         (47.0, 78.0, {'weight': 1.2822937333699174}) ,
         (47.0, 103.0, {'weight': 3.9053251231648707}) ,
         (48.0, 97.0, {'weight': 0.86085201141197409}) ,
         (48.0, 67.0, {'weight': 0.75656062694199944}) ,
         (49.0, 94.0, {'weight': 1.6216528905308547}) ,
         (49.0, 86.0, {'weight': 0.80157999082131093}) ,
         (49.0, 62.0, {'weight': 0.7081136236724922}) ,
         (51.0, 102.0, {'weight': 1.4704389417937378}) ,
         (51.0, 71.0, {'weight': 0.83506431983724716}) ,
         (54.0, 75.0, {'weight': 0.70074754481170742}) ,
         (55.0, 58.0, {'weight': 0.78571631647476448}) ,
         (56.0, 82.0, {'weight': 1.3387438494166808}) ,
         (57.0, 84.0, {'weight': 1.558483049272277}) ,
         (59.0, 64.0, {'weight': 1.0416266944398496}) ,
         (60.0, 98.0, {'weight': 1.2534403896544031}) ,
         (63.0, 73.0, {'weight': 0.83646303763566465}) ,
         (64.0, 72.0, {'weight': 0.8620326535711742}) ,
         (66.0, 77.0, {'weight': 0.79981721989351606}) ,
         (67.0, 72.0, {'weight': 0.74002007166874428}) ,
         (69.0, 83.0, {'weight': 1.5000235782351021}) ,
         (70.0, 77.0, {'weight': 0.75999034076724692}) ,
         (71.0, 88.0, {'weight': 0.66450874893016454}) ,
         (74.0, 97.0, {'weight': 0.8743417572549379}) ,
         (76.0, 107.0, {'weight': 2.0300278349030831}) ,
         (77.0, 89.0, {'weight': 0.75999034076724692}) ,
         (79.0, 106.0, {'weight': 4.5661761296968333}) ,
         (82.0, 95.0, {'weight': 1.083633962514291}) ,
         (84.0, 99.0, {'weight': 2.1024875417678257}) ,
         (89.0, 92.0, {'weight': 0.75419548272456249}) ,
         (100.0, 107.0, {'weight': 2.9259491743365307}) ,
         (101.0, 109.0, {'weight': 7.6747981730730297}) ,
         (102.0, 108.0, {'weight': 4.3128725576385092}) ,
         (104.0, 105.0, {'weight': 7.5515191839631273})]
G2 = nx.Graph()
G2.add_nodes_from(nodes)
G2.add_edges_from(edges)

G2.add_node('special', {'label': 'special'})

special_edges = []
for n, ndat in G2.nodes_iter(data=True):
   if ndat['label']!='special' and ndat['label']>=0:
      special_edges.append( (n,'special', {'weight':0}) )

G2.add_edges_from(special_edges)

for n, ndat in G2.nodes_iter(data=True):
   if ndat['label']==-1:
      path = nx.shortest_path(G2, source=n, target='special', weight='weight')
      ndat['closest'] = path[-2] #Closest node with label>=0

G2.remove_node('special')

Если я понимаю вашу проблему, то у вас есть проблема коммивояжера, что означает, что нет точного решения быстрее, чем (в худшем случае) тестирование когда-либо одной возможности.

h = heapq
solution = {}
g = build_nx_graph()
for node in g:
    if label_is_neg_1(node):
        solution[node] = false
        heappush(h, (0, node))
while h:
    distance, node = heappop(h)
    for neighbour, neighbour_dist in iterate_neighbours(g):
        bs = best_solution(neighbour, neighbour_dist)
        if not bs == solution.get(neighbour, bs):
            solution[neighbour] = bs
            heappush(h, (bs, neighbour))
    if len(solution) == len(g):
        break

Этот неполный псевдокод должен начинаться на всех узлах -1 и" разветвляться", вычисляя расстояние до всех не -1 узлов по порядку.