Как выбрать первую строку каждой группы?


у меня есть фрейм данных, созданный следующим образом:

df.groupBy($"Hour", $"Category")
  .agg(sum($"value") as "TotalValue")
  .sort($"Hour".asc, $"TotalValue".desc))

результаты выглядят так:

+----+--------+----------+
|Hour|Category|TotalValue|
+----+--------+----------+
|   0|   cat26|      30.9|
|   0|   cat13|      22.1|
|   0|   cat95|      19.6|
|   0|  cat105|       1.3|
|   1|   cat67|      28.5|
|   1|    cat4|      26.8|
|   1|   cat13|      12.6|
|   1|   cat23|       5.3|
|   2|   cat56|      39.6|
|   2|   cat40|      29.7|
|   2|  cat187|      27.9|
|   2|   cat68|       9.8|
|   3|    cat8|      35.6|
| ...|    ....|      ....|
+----+--------+----------+

как вы можете видеть, фрейм данных упорядочен по Hour в порядке возрастания, затем TotalValue в порядке убывания.

Я хотел бы выбрать верхнюю строку для каждой группы, т. е.

  • из группы Час==0 выберите (0,cat26,30.9)
  • из группы час= = 1 Выберите (1, cat67, 28.5)
  • из группы Hour==2 select (2, cat56, 39.6)
  • и так далее

таким образом, желаемый результат будет:

+----+--------+----------+
|Hour|Category|TotalValue|
+----+--------+----------+
|   0|   cat26|      30.9|
|   1|   cat67|      28.5|
|   2|   cat56|      39.6|
|   3|    cat8|      35.6|
| ...|     ...|       ...|
+----+--------+----------+

Это может быть удобно, чтобы иметь возможность выбрать первые n строк из каждой группы, а также.

любая помощь будет высоко ценится.

7 88

7 ответов:

окне функции:

что-то вроде этого должно сделать трюк:

import org.apache.spark.sql.functions.{row_number, max, broadcast}
import org.apache.spark.sql.expressions.Window

val df = sc.parallelize(Seq(
  (0,"cat26",30.9), (0,"cat13",22.1), (0,"cat95",19.6), (0,"cat105",1.3),
  (1,"cat67",28.5), (1,"cat4",26.8), (1,"cat13",12.6), (1,"cat23",5.3),
  (2,"cat56",39.6), (2,"cat40",29.7), (2,"cat187",27.9), (2,"cat68",9.8),
  (3,"cat8",35.6))).toDF("Hour", "Category", "TotalValue")

val w = Window.partitionBy($"hour").orderBy($"TotalValue".desc)

val dfTop = df.withColumn("rn", row_number.over(w)).where($"rn" === 1).drop("rn")

dfTop.show
// +----+--------+----------+
// |Hour|Category|TotalValue|
// +----+--------+----------+
// |   0|   cat26|      30.9|
// |   1|   cat67|      28.5|
// |   2|   cat56|      39.6|
// |   3|    cat8|      35.6|
// +----+--------+----------+

этот метод будет неэффективен в случае значительного перекоса данных.

простая агрегация SQL, за которой следует join:

в качестве альтернативы вы можете присоединиться к агрегированному фрейму данных:

val dfMax = df.groupBy($"hour".as("max_hour")).agg(max($"TotalValue").as("max_value"))

val dfTopByJoin = df.join(broadcast(dfMax),
    ($"hour" === $"max_hour") && ($"TotalValue" === $"max_value"))
  .drop("max_hour")
  .drop("max_value")

dfTopByJoin.show

// +----+--------+----------+
// |Hour|Category|TotalValue|
// +----+--------+----------+
// |   0|   cat26|      30.9|
// |   1|   cat67|      28.5|
// |   2|   cat56|      39.6|
// |   3|    cat8|      35.6|
// +----+--------+----------+

он будет сохранять повторяющиеся значения (если есть более одной категории в час с тем же общим значением). Вы можете удалите их следующим образом:

dfTopByJoin
  .groupBy($"hour")
  .agg(
    first("category").alias("category"),
    first("TotalValue").alias("TotalValue"))

через заказ свыше structs:

аккуратный, хотя и не очень хорошо протестированный, трюк, который не требует объединения или оконных функций:

val dfTop = df.select($"Hour", struct($"TotalValue", $"Category").alias("vs"))
  .groupBy($"hour")
  .agg(max("vs").alias("vs"))
  .select($"Hour", $"vs.Category", $"vs.TotalValue")

dfTop.show
// +----+--------+----------+
// |Hour|Category|TotalValue|
// +----+--------+----------+
// |   0|   cat26|      30.9|
// |   1|   cat67|      28.5|
// |   2|   cat56|      39.6|
// |   3|    cat8|      35.6|
// +----+--------+----------+

С API набора данных (СПАРК 1.6+, 2.0+):

зажигания 1.6:

case class Record(Hour: Integer, Category: String, TotalValue: Double)

df.as[Record]
  .groupBy($"hour")
  .reduce((x, y) => if (x.TotalValue > y.TotalValue) x else y)
  .show

// +---+--------------+
// | _1|            _2|
// +---+--------------+
// |[0]|[0,cat26,30.9]|
// |[1]|[1,cat67,28.5]|
// |[2]|[2,cat56,39.6]|
// |[3]| [3,cat8,35.6]|
// +---+--------------+

Spark 2.0 или более поздней версии:

df.as[Record]
  .groupByKey(_.Hour)
  .reduceGroups((x, y) => if (x.TotalValue > y.TotalValue) x else y)

последние два метода могут использовать комбинацию сторон карты и не требуется полное перемешивание, поэтому большую часть времени должна демонстрировать лучшую производительность по сравнению с оконными функциями и соединениями. Эти трости также используются со структурированной потоковой передачей в completed режим вывода.

не используйте:

df.orderBy(...).groupBy(...).agg(first(...), ...)

может показаться, что это работает (особенно в local режим), но это ненадежно (Искра-16207). Кредиты на Цах Зоар на связывание соответствующих JIRA выпуск.

то же самое замечание относится к

df.orderBy(...).dropDuplicates(...)

который внутренне использует эквивалентный план выполнения.

для Spark 2.0.2 с группировкой по нескольким столбцам:

import org.apache.spark.sql.functions.row_number
import org.apache.spark.sql.expressions.Window

val w = Window.partitionBy($"col1", $"col2", $"col3").orderBy($"timestamp".desc)

val refined_df = df.withColumn("rn", row_number.over(w)).where($"rn" === 1).drop("rn")

Это точно такой же ответ zero323, но в способе sql-запроса

предполагая, что dataframe создается и регистрируется как

df.createOrReplaceTempView("table")
//+----+--------+----------+
//|Hour|Category|TotalValue|
//+----+--------+----------+
//|0   |cat26   |30.9      |
//|0   |cat13   |22.1      |
//|0   |cat95   |19.6      |
//|0   |cat105  |1.3       |
//|1   |cat67   |28.5      |
//|1   |cat4    |26.8      |
//|1   |cat13   |12.6      |
//|1   |cat23   |5.3       |
//|2   |cat56   |39.6      |
//|2   |cat40   |29.7      |
//|2   |cat187  |27.9      |
//|2   |cat68   |9.8       |
//|3   |cat8    |35.6      |
//+----+--------+----------+

окно функции :

sqlContext.sql("select Hour, Category, TotalValue from (select *, row_number() OVER (PARTITION BY Hour ORDER BY TotalValue DESC) as rn  FROM table) tmp where rn = 1").show(false)
//+----+--------+----------+
//|Hour|Category|TotalValue|
//+----+--------+----------+
//|1   |cat67   |28.5      |
//|3   |cat8    |35.6      |
//|2   |cat56   |39.6      |
//|0   |cat26   |30.9      |
//+----+--------+----------+

простая агрегация SQL, за которой следует join:

sqlContext.sql("select Hour, first(Category) as Category, first(TotalValue) as TotalValue from " +
  "(select Hour, Category, TotalValue from table tmp1 " +
  "join " +
  "(select Hour as max_hour, max(TotalValue) as max_value from table group by Hour) tmp2 " +
  "on " +
  "tmp1.Hour = tmp2.max_hour and tmp1.TotalValue = tmp2.max_value) tmp3 " +
  "group by tmp3.Hour")
  .show(false)
//+----+--------+----------+
//|Hour|Category|TotalValue|
//+----+--------+----------+
//|1   |cat67   |28.5      |
//|3   |cat8    |35.6      |
//|2   |cat56   |39.6      |
//|0   |cat26   |30.9      |
//+----+--------+----------+

использование упорядочивания по структурам:

sqlContext.sql("select Hour, vs.Category, vs.TotalValue from (select Hour, max(struct(TotalValue, Category)) as vs from table group by Hour)").show(false)
//+----+--------+----------+
//|Hour|Category|TotalValue|
//+----+--------+----------+
//|1   |cat67   |28.5      |
//|3   |cat8    |35.6      |
//|2   |cat56   |39.6      |
//|0   |cat26   |30.9      |
//+----+--------+----------+

DataSets way и не s такие же как в оригинале ответ

Решение ниже делает только один groupBy и извлекает строки вашего фрейма данных, которые содержат maxValue в одном кадре. Нет необходимости в дальнейших соединениях или окнах.

import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.DataFrame

//df is the dataframe with Day, Category, TotalValue

implicit val dfEnc = RowEncoder(df.schema)

val res: DataFrame = df.groupByKey{(r) => r.getInt(0)}.mapGroups[Row]{(day: Int, rows: Iterator[Row]) => i.maxBy{(r) => r.getDouble(2)}}

Если фрейм данных должен быть сгруппирован по нескольким столбцам, это может помочь

val keys = List("Hour", "Category");
 val selectFirstValueOfNoneGroupedColumns = 
 df.columns
   .filterNot(keys.toSet)
   .map(_ -> "first").toMap
 val grouped = 
 df.groupBy(keys.head, keys.tail: _*)
   .agg(selectFirstValueOfNoneGroupedColumns)

надеюсь, это поможет кому-то с подобной проблемой

здесь вы можете сделать вот так -

   val data = df.groupBy("Hour").agg(first("Hour").as("_1"),first("Category").as("Category"),first("TotalValue").as("TotalValue")).drop("Hour")

data.withColumnRenamed("_1","Hour").show

мы можем использовать функцию окна rank () (где вы выбрали бы rank = 1) ранг просто добавляет число для каждой строки группы (в этом случае это будет час)

вот пример. ( от https://github.com/jaceklaskowski/mastering-apache-spark-book/blob/master/spark-sql-functions.adoc#rank )

val dataset = spark.range(9).withColumn("bucket", 'id % 3)

import org.apache.spark.sql.expressions.Window
val byBucket = Window.partitionBy('bucket).orderBy('id)

scala> dataset.withColumn("rank", rank over byBucket).show
+---+------+----+
| id|bucket|rank|
+---+------+----+
|  0|     0|   1|
|  3|     0|   2|
|  6|     0|   3|
|  1|     1|   1|
|  4|     1|   2|
|  7|     1|   3|
|  2|     2|   1|
|  5|     2|   2|
|  8|     2|   3|
+---+------+----+