Как объединить несколько условий для подмножества фрейма данных с помощью "или"?


У меня есть сведения.я хочу попробовать два разных условия на двух разных столбцах, но я хочу, чтобы эти условия были включительными. Поэтому я хотел бы использовать "или" для объединения условий. Я использовал следующий синтаксис раньше с большим успехом, когда я хотел использовать условие "и".

my.data.frame <- data[(data$V1 > 2) & (data$V2 < 4), ]

но я не знаю, как использовать 'или' в выше.

3 137

3 ответа:

my.data.frame <- subset(data , V1 > 2 | V2 < 4)

альтернативное решение, которое имитирует поведение этой функции и было бы более подходящим для включения в тело функции:

new.data <- data[ which( data$V1 > 2 | data$V2 < 4) , ]

некоторые люди критикуют использование which как не нужно, но это предотвращает NA значения от отбрасывания нежелательных результатов. Эквивалент.( т. е. не возвращая NA-строки для любых NA в V1 или V2) к двум вариантам, показанным выше, без which будет:

 new.data <- data[ !is.na(data$V1 | data$V2) & ( data$V1 > 2 | data$V2 < 4)  , ]

примечание: Я хочу поблагодарите анонимного участника, который попытался исправить ошибку в коде сразу выше, исправление, которое было отклонено модераторами. На самом деле была дополнительная ошибка, которую я заметил, когда исправлял первый. Условное предложение, которое проверяет значения NA, должно быть первым, если оно должно обрабатываться так, как я намеревался, поскольку ...

> NA & 1
[1] NA
> 0 & NA
[1] FALSE

порядок аргументов может иметь значение при использовании '&".

вы ищете "|."Смотрите http://cran.r-project.org/doc/manuals/R-intro.html#Logical-vectors

my.data.frame <- data[(data$V1 > 2) | (data$V2 < 4), ]

просто для полноты картины, мы можем использовать операторы [ и [[:

set.seed(1)
df <- data.frame(v1 = runif(10), v2 = letters[1:10])

несколько вариантов

df[df[1] < 0.5 | df[2] == "g", ] 
df[df[[1]] < 0.5 | df[[2]] == "g", ] 
df[df["v1"] < 0.5 | df["v2"] == "g", ]

DF$name is эквивалентно df [["name", exact = FALSE]]

используя dplyr:

library(dplyr)
filter(df, v1 < 0.5 | v2 == "g")

используя sqldf:

library(sqldf)
sqldf('SELECT *
      FROM df 
      WHERE v1 < 0.5 OR v2 = "g"')

вывод для указанных выше параметров:

          v1 v2
1 0.26550866  a
2 0.37212390  b
3 0.20168193  e
4 0.94467527  g
5 0.06178627  j