Как вы можете определить точку между двумя другими точками на отрезке линии?


допустим, у вас есть двумерная плоскость с двумя точками (называемыми a и b) на ней, представленными целым числом x и целым числом y для каждой точки.

Как вы можете определить, находится ли другая точка c на отрезке линии, определяемом a и b?

Я использую python больше всего, но примеры на любом языке были бы полезны.

18 79

18 ответов:

проверить, если произведение of (b-a) и (c-a) равно 0, как говорит Дариус Бэкон, говорит вам, если точки a, b и c выровнены.

но, как вы хотите знать, если c находится между a и b, вы также должны проверить, что скалярное произведение of (b-a) и (c-a) is положительное и меньше чем квадрат расстояния между a и b.

в неоптимизированном псевдокоде:

def isBetween(a, b, c):
    crossproduct = (c.y - a.y) * (b.x - a.x) - (c.x - a.x) * (b.y - a.y)

    # compare versus epsilon for floating point values, or != 0 if using integers
    if abs(crossproduct) > epsilon:
        return False

    dotproduct = (c.x - a.x) * (b.x - a.x) + (c.y - a.y)*(b.y - a.y)
    if dotproduct < 0:
        return False

    squaredlengthba = (b.x - a.x)*(b.x - a.x) + (b.y - a.y)*(b.y - a.y)
    if dotproduct > squaredlengthba:
        return False

    return True

вот как я бы это сделал:

def distance(a,b):
    return sqrt((a.x - b.x)**2 + (a.y - b.y)**2)

def is_between(a,c,b):
    return distance(a,c) + distance(c,b) == distance(a,b)

проверьте, если перекрестное произведение b-a и c-a и0: это означает, что все точки лежат на одной прямой. Если они есть, проверьте, если cкоординаты находятся между aи b's. используйте либо координаты x или y, до тех пор, как a и b разделены на этой оси (или они одинаковы на обоих).

def is_on(a, b, c):
    "Return true iff point c intersects the line segment from a to b."
    # (or the degenerate case that all 3 points are coincident)
    return (collinear(a, b, c)
            and (within(a.x, c.x, b.x) if a.x != b.x else 
                 within(a.y, c.y, b.y)))

def collinear(a, b, c):
    "Return true iff a, b, and c all lie on the same line."
    return (b.x - a.x) * (c.y - a.y) == (c.x - a.x) * (b.y - a.y)

def within(p, q, r):
    "Return true iff q is between p and r (inclusive)."
    return p <= q <= r or r <= q <= p

этот ответ был беспорядок из трех обновлений. Стоящая информация от них: Брайан Хейс глава на красивые Код охватывает пространство проектирования для функции проверки коллинеарности - полезный фон. Винсент помог улучшить этот. И именно Хейс предложил проверить только одну из координат x или y; первоначально код имел and на месте if a.x != b.x else.

вот еще один подход:

  • предположим, что две точки A (x1,y1) и B (x2,y2)
  • уравнение линии, проходящей через эти точки, равно (x-x1)/(y-y1)=(x2-x1)/(y2-y1) .. (просто делая приравнивание склонов)

точка C (x3,y3) будет лежать между A & B, если:

  • x3, y3 удовлетворяет приведенному выше уравнению.
  • x3 лежит между x1 & x2 и y3 лежит между y1 & y2 (тривиальная проверка)

длина сегмента не важна, поэтому использование квадратного корня не требуется и его следует избегать, поскольку мы можем потерять некоторую точность.

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y

class Segment:
    def __init__(self, a, b):
        self.a = a
        self.b = b

    def is_between(self, c):
        # Check if slope of a to c is the same as a to b ;
        # that is, when moving from a.x to c.x, c.y must be proportionally
        # increased than it takes to get from a.x to b.x .

        # Then, c.x must be between a.x and b.x, and c.y must be between a.y and b.y.
        # => c is after a and before b, or the opposite
        # that is, the absolute value of cmp(a, b) + cmp(b, c) is either 0 ( 1 + -1 )
        #    or 1 ( c == a or c == b)

        a, b = self.a, self.b             

        return ((b.x - a.x) * (c.y - a.y) == (c.x - a.x) * (b.y - a.y) and 
                abs(cmp(a.x, c.x) + cmp(b.x, c.x)) <= 1 and
                abs(cmp(a.y, c.y) + cmp(b.y, c.y)) <= 1)

какой-то случайный пример использования :

a = Point(0,0)
b = Point(50,100)
c = Point(25,50)
d = Point(0,8)

print Segment(a,b).is_between(c)
print Segment(a,b).is_between(d)

используя более геометрический подход, вычислите следующие расстояния:

ab = sqrt((a.x-b.x)**2 + (a.y-b.y)**2)
ac = sqrt((a.x-c.x)**2 + (a.y-c.y)**2)
bc = sqrt((b.x-c.x)**2 + (b.y-c.y)**2)

и проверить, является ли ac+bc равна ab:

is_on_segment = abs(ac + bc - ab) < EPSILON

это потому, что есть три возможности:

  • 3 точки образуют треугольник => ac+bc > ab
  • они коллинеарны и c находится за пределами ab сегмент => ac+bc > ab
  • они коллинеарные и c внутри ab сегмент => ac+bc = ab

хорошо, много упоминаний о линейной алгебре( перекрестное произведение векторов), и это работает в реальном (т. е. непрерывном или с плавающей точкой) пространстве, но в вопросе конкретно указано, что две точки были выражены как чисел и, таким образом, перекрестное произведение не является правильным решением, хотя оно может дать приблизительное решение.

правильное решение-использовать Bresenham строки между двумя точками и посмотреть, является ли третья точка одной из точки На линии. Если точки достаточно далеки, что вычисление алгоритма не является производительным (и это должно быть действительно большим для этого), я уверен, что вы можете копаться и находить оптимизации.

вот другой способ сделать это, с кодом, приведенным в C++. Учитывая две точки, l1 и l2 тривиально выразить отрезок линии между ними как

l1 + A(l2 - l1)

где 0

x = l1.x + A(l2.x - l1.x)
y = l1.y + A(l2.y - l1.y)

возьмите точку (x, y) и подставьте ее компоненты x и y в эти два выражения, чтобы решите для A. точка находится на линии, если решения для A в обоих выражениях равны и 0

// Vec2 is a simple x/y struct - it could very well be named Point for this use

bool isBetween(double a, double b, double c) {
    // return if c is between a and b
    double larger = (a >= b) ? a : b;
    double smaller = (a != larger) ? a : b;

    return c <= larger && c >= smaller;
}

bool pointOnLine(Vec2<double> p, Vec2<double> l1, Vec2<double> l2) {
    if(l2.x - l1.x == 0) return isBetween(l1.y, l2.y, p.y); // vertical line
    if(l2.y - l1.y == 0) return isBetween(l1.x, l2.x, p.x); // horizontal line

    double Ax = (p.x - l1.x) / (l2.x - l1.x);
    double Ay = (p.y - l1.y) / (l2.y - l1.y);

    // We want Ax == Ay, so check if the difference is very small (floating
    // point comparison is fun!)

    return fabs(Ax - Ay) < 0.000001 && Ax >= 0.0 && Ax <= 1.0;
}
# epsilon = small constant

def isBetween(a, b, c):
    lengthca2  = (c.x - a.x)*(c.x - a.x) + (c.y - a.y)*(c.y - a.y)
    lengthba2  = (b.x - a.x)*(b.x - a.x) + (b.y - a.y)*(b.y - a.y)
    if lengthca2 > lengthba2: return False
    dotproduct = (c.x - a.x)*(b.x - a.x) + (c.y - a.y)*(b.y - a.y)
    if dotproduct < 0.0: return False
    if abs(dotproduct*dotproduct - lengthca2*lengthba2) > epsilon: return False 
    return True

мне это нужно для javascript для использования в холсте html5 для обнаружения, если курсор пользователя был над или около определенной строки. Поэтому я изменил ответ, данный Дариусом Бэконом в coffeescript:

is_on = (a,b,c) ->
    # "Return true if point c intersects the line segment from a to b."
    # (or the degenerate case that all 3 points are coincident)
    return (collinear(a,b,c) and withincheck(a,b,c))

withincheck = (a,b,c) ->
    if a[0] != b[0]
        within(a[0],c[0],b[0]) 
    else 
        within(a[1],c[1],b[1])

collinear = (a,b,c) ->
    # "Return true if a, b, and c all lie on the same line."
    ((b[0]-a[0])*(c[1]-a[1]) < (c[0]-a[0])*(b[1]-a[1]) + 1000) and ((b[0]-a[0])*(c[1]-a[1]) > (c[0]-a[0])*(b[1]-a[1]) - 1000)

within = (p,q,r) ->
    # "Return true if q is between p and r (inclusive)."
    p <= q <= r or r <= q <= p

вот как я это делал в школе. Я забыл, почему это не очень хорошая идея.

EDIT:

@Darius Bacon: цитирует книгу "Красивый код" который содержит объяснение, почему приведенный ниже код не является хорошей идеей.

#!/usr/bin/env python
from __future__ import division

epsilon = 1e-6

class Point:
    def __init__(self, x, y):
        self.x, self.y = x, y

class LineSegment:
    """
    >>> ls = LineSegment(Point(0,0), Point(2,4))
    >>> Point(1, 2) in ls
    True
    >>> Point(.5, 1) in ls
    True
    >>> Point(.5, 1.1) in ls
    False
    >>> Point(-1, -2) in ls
    False
    >>> Point(.1, 0.20000001) in ls
    True
    >>> Point(.1, 0.2001) in ls
    False
    >>> ls = LineSegment(Point(1, 1), Point(3, 5))
    >>> Point(2, 3) in ls
    True
    >>> Point(1.5, 2) in ls
    True
    >>> Point(0, -1) in ls
    False
    >>> ls = LineSegment(Point(1, 2), Point(1, 10))
    >>> Point(1, 6) in ls
    True
    >>> Point(1, 1) in ls
    False
    >>> Point(2, 6) in ls 
    False
    >>> ls = LineSegment(Point(-1, 10), Point(5, 10))
    >>> Point(3, 10) in ls
    True
    >>> Point(6, 10) in ls
    False
    >>> Point(5, 10) in ls
    True
    >>> Point(3, 11) in ls
    False
    """
    def __init__(self, a, b):
        if a.x > b.x:
            a, b = b, a
        (self.x0, self.y0, self.x1, self.y1) = (a.x, a.y, b.x, b.y)
        self.slope = (self.y1 - self.y0) / (self.x1 - self.x0) if self.x1 != self.x0 else None

    def __contains__(self, c):
        return (self.x0 <= c.x <= self.x1 and
                min(self.y0, self.y1) <= c.y <= max(self.y0, self.y1) and
                (not self.slope or -epsilon < (c.y - self.y(c.x)) < epsilon))

    def y(self, x):        
        return self.slope * (x - self.x0) + self.y0

if __name__ == '__main__':
    import  doctest
    doctest.testmod()

c# От http://www.faqs.org/faqs/graphics/algorithms-faq/ - >Тема 1.02: как найти расстояние от точки до линии?

Boolean Contains(PointF from, PointF to, PointF pt, double epsilon)
        {

            double segmentLengthSqr = (to.X - from.X) * (to.X - from.X) + (to.Y - from.Y) * (to.Y - from.Y);
            double r = ((pt.X - from.X) * (to.X - from.X) + (pt.Y - from.Y) * (to.Y - from.Y)) / segmentLengthSqr;
            if(r<0 || r>1) return false;
            double sl = ((from.Y - pt.Y) * (to.X - from.X) - (from.X - pt.X) * (to.Y - from.Y)) / System.Math.Sqrt(segmentLengthSqr);
            return -epsilon <= sl && sl <= epsilon;
        }

вот некоторые Java-код, который работал для меня:

boolean liesOnSegment(Coordinate a, Coordinate b, Coordinate  c) {

    double dotProduct = (c.x - a.x) * (c.x - b.x) + (c.y - a.y) * (c.y - b.y);
    if (dotProduct < 0) return true;
    return false;
}

Как насчет того, чтобы просто убедиться, что наклон один и тот же, а точка находится между другими?

заданные точки (x1, y1) и (x2, y2) (с x2 > x1) и точка кандидата (a,b)

Если (b-y1) / (a-x1) = (y2-y2) / (x2-x1) и x1

тогда (a,b) должно быть на линии между (x1, y1) и (x2, y2)

любая точка на отрезке линии (a,b) (где a и b являются векторами) можно выразить как линейные комбинации из двух векторов a и b:

другими словами, если c лежит на отрезке линии (a,b):

c = ma + (1 - m)b, where 0 <= m <= 1

решения для m, мы получим:

m = (c.x - b.x)/(a.x - b.x) = (c.y - b.y)/(a.y - b.y)

Итак, наш тест будет (в Python):

def is_on(a, b, c):
    """Is c on the line segment ab?"""

    def _is_zero( val ):
        return -epsilon < val < epsilon

    x1 = a.x - b.x
    x2 = c.x - b.x
    y1 = a.y - b.y
    y2 = c.y - b.y

    if _is_zero(x1) and _is_zero(y1):
        # a and b are the same point:
        # so check that c is the same as a and b
        return _is_zero(x2) and _is_zero(y2)

    if _is_zero(x1):
        # a and b are on same vertical line
        m2 = y2 * 1.0 / y1
        return _is_zero(x2) and 0 <= m2 <= 1
    elif _is_zero(y1):
        # a and b are on same horizontal line
        m1 = x2 * 1.0 / x1
        return _is_zero(y2) and 0 <= m1 <= 1
    else:
        m1 = x2 * 1.0 / x1
        if m1 < 0 or m1 > 1:
            return False
        m2 = y2 * 1.0 / y1
        return _is_zero(m2 - m1)

ответ в C# с использованием класса Vector2D

public static bool IsOnSegment(this Segment2D @this, Point2D c, double tolerance)
{
     var distanceSquared = tolerance*tolerance;
     // Start of segment to test point vector
     var v = new Vector2D( @this.P0, c ).To3D();
     // Segment vector
     var s = new Vector2D( @this.P0, @this.P1 ).To3D();
     // Dot product of s
     var ss = s*s;
     // k is the scalar we multiply s by to get the projection of c onto s
     // where we assume s is an infinte line
     var k = v*s/ss;
     // Convert our tolerance to the units of the scalar quanity k
     var kd = tolerance / Math.Sqrt( ss );
     // Check that the projection is within the bounds
     if (k <= -kd || k >= (1+kd))
     {
        return false;
     }
     // Find the projection point
     var p = k*s;
     // Find the vector between test point and it's projection
     var vp = (v - p);
     // Check the distance is within tolerance.
     return vp * vp < distanceSquared;
}

отметим, что

s * s

является точечным произведением вектора сегмента через перегрузку оператора в C#

Если проекция находится в пределах границ мы просто проверяем, если расстояние от точки до проекции находится в пределах границ.

преимущество кросс-продуктового подхода заключается в том, что допуск имеет значимое значение.

вы можете использовать клин и скалярное произведение:

def dot(v,w): return v.x*w.x + v.y*w.y
def wedge(v,w): return v.x*w.y - v.y*w.x

def is_between(a,b,c):
   v = a - b
   w = b - c
   return wedge(v,w) == 0 and dot(v,w) > 0

вот мое решение с C# в Unity.

private bool _isPointOnLine( Vector2 ptLineStart, Vector2 ptLineEnd, Vector2 ptPoint )
{
    bool bRes = false;
    if((Mathf.Approximately(ptPoint.x, ptLineStart.x) || Mathf.Approximately(ptPoint.x, ptLineEnd.x)))
    {
        if(ptPoint.y > ptLineStart.y && ptPoint.y < ptLineEnd.y)
        {
            bRes = true;
        }
    }
    else if((Mathf.Approximately(ptPoint.y, ptLineStart.y) || Mathf.Approximately(ptPoint.y, ptLineEnd.y)))
    {
        if(ptPoint.x > ptLineStart.x && ptPoint.x < ptLineEnd.x)
        {
            bRes = true;
        }
    }
    return bRes;
}