Определение средней точки цветовой карты в matplotlib


Я хочу установить среднюю точку цветовой карты, т. е. мои данные идут от -5 до 10, я хочу, чтобы ноль был серединой. Я думаю, что способ сделать это-нормализовать подклассы и использовать норму, но я не нашел ни одного примера, и мне не ясно, что именно я должен реализовать.

8 58

8 ответов:

Я знаю, что это поздно для игры, но я просто прошел через этот процесс и придумал решение, которое, возможно, менее надежное, чем нормализация подклассов, но гораздо проще. Я подумал, что было бы хорошо поделиться им здесь для потомков.

функции

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid

def shiftedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'):
    '''
    Function to offset the "center" of a colormap. Useful for
    data with a negative min and positive max and you want the
    middle of the colormap's dynamic range to be at zero.

    Input
    -----
      cmap : The matplotlib colormap to be altered
      start : Offset from lowest point in the colormap's range.
          Defaults to 0.0 (no lower offset). Should be between
          0.0 and `midpoint`.
      midpoint : The new center of the colormap. Defaults to 
          0.5 (no shift). Should be between 0.0 and 1.0. In
          general, this should be  1 - vmax / (vmax + abs(vmin))
          For example if your data range from -15.0 to +5.0 and
          you want the center of the colormap at 0.0, `midpoint`
          should be set to  1 - 5/(5 + 15)) or 0.75
      stop : Offset from highest point in the colormap's range.
          Defaults to 1.0 (no upper offset). Should be between
          `midpoint` and 1.0.
    '''
    cdict = {
        'red': [],
        'green': [],
        'blue': [],
        'alpha': []
    }

    # regular index to compute the colors
    reg_index = np.linspace(start, stop, 257)

    # shifted index to match the data
    shift_index = np.hstack([
        np.linspace(0.0, midpoint, 128, endpoint=False), 
        np.linspace(midpoint, 1.0, 129, endpoint=True)
    ])

    for ri, si in zip(reg_index, shift_index):
        r, g, b, a = cmap(ri)

        cdict['red'].append((si, r, r))
        cdict['green'].append((si, g, g))
        cdict['blue'].append((si, b, b))
        cdict['alpha'].append((si, a, a))

    newcmap = matplotlib.colors.LinearSegmentedColormap(name, cdict)
    plt.register_cmap(cmap=newcmap)

    return newcmap

пример

biased_data = np.random.random_integers(low=-15, high=5, size=(37,37))

orig_cmap = matplotlib.cm.coolwarm
shifted_cmap = shiftedColorMap(orig_cmap, midpoint=0.75, name='shifted')
shrunk_cmap = shiftedColorMap(orig_cmap, start=0.15, midpoint=0.75, stop=0.85, name='shrunk')

fig = plt.figure(figsize=(6,6))
grid = AxesGrid(fig, 111, nrows_ncols=(2, 2), axes_pad=0.5,
                label_mode="1", share_all=True,
                cbar_location="right", cbar_mode="each",
                cbar_size="7%", cbar_pad="2%")

# normal cmap
im0 = grid[0].imshow(biased_data, interpolation="none", cmap=orig_cmap)
grid.cbar_axes[0].colorbar(im0)
grid[0].set_title('Default behavior (hard to see bias)', fontsize=8)

im1 = grid[1].imshow(biased_data, interpolation="none", cmap=orig_cmap, vmax=15, vmin=-15)
grid.cbar_axes[1].colorbar(im1)
grid[1].set_title('Centered zero manually,\nbut lost upper end of dynamic range', fontsize=8)

im2 = grid[2].imshow(biased_data, interpolation="none", cmap=shifted_cmap)
grid.cbar_axes[2].colorbar(im2)
grid[2].set_title('Recentered cmap with function', fontsize=8)

im3 = grid[3].imshow(biased_data, interpolation="none", cmap=shrunk_cmap)
grid.cbar_axes[3].colorbar(im3)
grid[3].set_title('Recentered cmap with function\nand shrunk range', fontsize=8)

for ax in grid:
    ax.set_yticks([])
    ax.set_xticks([])

результаты пример:

enter image description here

вот решение подклассов нормализовать. Чтобы использовать его

norm = MidPointNorm(midpoint=3)
imshow(X, norm=norm)

вот класс:

from numpy import ma
from matplotlib import cbook
from matplotlib.colors import Normalize

class MidPointNorm(Normalize):    
    def __init__(self, midpoint=0, vmin=None, vmax=None, clip=False):
        Normalize.__init__(self,vmin, vmax, clip)
        self.midpoint = midpoint

    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        result, is_scalar = self.process_value(value)

        self.autoscale_None(result)
        vmin, vmax, midpoint = self.vmin, self.vmax, self.midpoint

        if not (vmin < midpoint < vmax):
            raise ValueError("midpoint must be between maxvalue and minvalue.")       
        elif vmin == vmax:
            result.fill(0) # Or should it be all masked? Or 0.5?
        elif vmin > vmax:
            raise ValueError("maxvalue must be bigger than minvalue")
        else:
            vmin = float(vmin)
            vmax = float(vmax)
            if clip:
                mask = ma.getmask(result)
                result = ma.array(np.clip(result.filled(vmax), vmin, vmax),
                                  mask=mask)

            # ma division is very slow; we can take a shortcut
            resdat = result.data

            #First scale to -1 to 1 range, than to from 0 to 1.
            resdat -= midpoint            
            resdat[resdat>0] /= abs(vmax - midpoint)            
            resdat[resdat<0] /= abs(vmin - midpoint)

            resdat /= 2.
            resdat += 0.5
            result = ma.array(resdat, mask=result.mask, copy=False)                

        if is_scalar:
            result = result[0]            
        return result

    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        vmin, vmax, midpoint = self.vmin, self.vmax, self.midpoint

        if cbook.iterable(value):
            val = ma.asarray(value)
            val = 2 * (val-0.5)  
            val[val>0]  *= abs(vmax - midpoint)
            val[val<0] *= abs(vmin - midpoint)
            val += midpoint
            return val
        else:
            val = 2 * (val - 0.5)
            if val < 0: 
                return  val*abs(vmin-midpoint) + midpoint
            else:
                return  val*abs(vmax-midpoint) + midpoint

проще всего просто использовать vmin и vmax аргументы imshow (предполагая, что вы работаете с данными изображения), а не подклассы matplotlib.colors.Normalize.

например.

import numpy as np
import matplotlib.pyplot as plt

data = np.random.random((10,10))
# Make the data range from about -5 to 10
data = 10 / 0.75 * (data - 0.25)

plt.imshow(data, vmin=-10, vmax=10)
plt.colorbar()

plt.show()

enter image description here

не уверен, что вы все еще ищете ответ. Для меня, пытаясь подкласс Normalize была неудачной. Поэтому я сосредоточился на ручном создании нового набора данных, ТИКов и меток тиков, чтобы получить эффект, который, как я думаю, вы стремитесь.

нашел scale модуль в matplotlib, который имеет класс, используемый для преобразования линейных графиков по правилам "системного журнала", поэтому я использую его для преобразования данных. Затем я масштабирую данные так, что они идут от 0 до 1 (что Normalize обычно делает), но я масштабировать положительные числа отличаются от отрицательных чисел. Это связано с тем, что ваши vmax и vmin могут не совпадать, поэтому .5 -> 1 может охватывать больший положительный диапазон, чем .5 -> 0, отрицательный диапазон. Мне было проще создать процедуру для вычисления значений тика и метки.

Ниже приведен код и пример рисунка.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mpl as mpl
import matplotlib.scale as scale

NDATA = 50
VMAX=10
VMIN=-5
LINTHRESH=1e-4

def makeTickLables(vmin,vmax,linthresh):
    """
    make two lists, one for the tick positions, and one for the labels
    at those positions. The number and placement of positive labels is 
    different from the negative labels.
    """
    nvpos = int(np.log10(vmax))-int(np.log10(linthresh))
    nvneg = int(np.log10(np.abs(vmin)))-int(np.log10(linthresh))+1
    ticks = []
    labels = []
    lavmin = (np.log10(np.abs(vmin)))
    lvmax = (np.log10(np.abs(vmax)))
    llinthres = int(np.log10(linthresh))
    # f(x) = mx+b
    # f(llinthres) = .5
    # f(lavmin) = 0
    m = .5/float(llinthres-lavmin)
    b = (.5-llinthres*m-lavmin*m)/2
    for itick in range(nvneg):
        labels.append(-1*float(pow(10,itick+llinthres)))
        ticks.append((b+(itick+llinthres)*m))
    # add vmin tick
    labels.append(vmin)
    ticks.append(b+(lavmin)*m)

    # f(x) = mx+b
    # f(llinthres) = .5
    # f(lvmax) = 1
    m = .5/float(lvmax-llinthres)
    b = m*(lvmax-2*llinthres) 
    for itick in range(1,nvpos):
        labels.append(float(pow(10,itick+llinthres)))
        ticks.append((b+(itick+llinthres)*m))
    # add vmax tick
    labels.append(vmax)
    ticks.append(b+(lvmax)*m)

    return ticks,labels


data = (VMAX-VMIN)*np.random.random((NDATA,NDATA))+VMIN

# define a scaler object that can transform to 'symlog'
scaler = scale.SymmetricalLogScale.SymmetricalLogTransform(10,LINTHRESH)
datas = scaler.transform(data)

# scale datas so that 0 is at .5
# so two seperate scales, one for positive and one for negative
data2 = np.where(np.greater(data,0),
                 .75+.25*datas/np.log10(VMAX),
                 .25+.25*(datas)/np.log10(np.abs(VMIN))
                 )

ticks,labels=makeTickLables(VMIN,VMAX,LINTHRESH)

cmap = mpl.cm.jet
fig = plt.figure()
ax = fig.add_subplot(111)
im = ax.imshow(data2,cmap=cmap,vmin=0,vmax=1)
cbar = plt.colorbar(im,ticks=ticks)
cbar.ax.set_yticklabels(labels)

fig.savefig('twoscales.png')

vmax=10,vmin=-5 and linthresh=1e-4

не стесняйтесь регулировать "константы" (например VMAX) в верхней части скрипта, чтобы убедиться, что он ведет себя что ж.

я использовал отличный ответ от Paul H, но столкнулся с проблемой, потому что некоторые из моих данных варьировались от отрицательного до положительного, в то время как другие наборы варьировались от 0 до положительного или от отрицательного до 0; в любом случае я хотел, чтобы 0 был окрашен в белый цвет (середина цветовой карты, которую я использую). С существующей реализацией, если ваш midpoint значение равно 1 или 0, исходные сопоставления не были перезаписаны. Вы можете видеть это на следующем рисунке: graphs before edit 3-е место столбец выглядит правильно, но темно-синяя область во 2-м столбце и темно-красная область в остальных столбцах все должны быть белыми (их значения данных на самом деле 0). Использование моего исправления дает мне: graphs after edit Моя функция по существу такая же, как у Павла H, с моими изменениями в начале for петли:

    def shiftedColorMap(cmap, min_val, max_val, name):
    '''Function to offset the "center" of a colormap. Useful for data with a negative min and positive max and you want the middle of the colormap's dynamic range to be at zero. Adapted from https://stackoverflow.com/questions/7404116/defining-the-midpoint-of-a-colormap-in-matplotlib

    Input
    -----
      cmap : The matplotlib colormap to be altered.
      start : Offset from lowest point in the colormap's range.
          Defaults to 0.0 (no lower ofset). Should be between
          0.0 and `midpoint`.
      midpoint : The new center of the colormap. Defaults to
          0.5 (no shift). Should be between 0.0 and 1.0. In
          general, this should be  1 - vmax/(vmax + abs(vmin))
          For example if your data range from -15.0 to +5.0 and
          you want the center of the colormap at 0.0, `midpoint`
          should be set to  1 - 5/(5 + 15)) or 0.75
      stop : Offset from highets point in the colormap's range.
          Defaults to 1.0 (no upper ofset). Should be between
          `midpoint` and 1.0.'''
    epsilon = 0.001
    start, stop = 0.0, 1.0
    min_val, max_val = min(0.0, min_val), max(0.0, max_val) # Edit #2
    midpoint = 1.0 - max_val/(max_val + abs(min_val))
    cdict = {'red': [], 'green': [], 'blue': [], 'alpha': []}
    # regular index to compute the colors
    reg_index = np.linspace(start, stop, 257)
    # shifted index to match the data
    shift_index = np.hstack([np.linspace(0.0, midpoint, 128, endpoint=False), np.linspace(midpoint, 1.0, 129, endpoint=True)])
    for ri, si in zip(reg_index, shift_index):
        if abs(si - midpoint) < epsilon:
            r, g, b, a = cmap(0.5) # 0.5 = original midpoint.
        else:
            r, g, b, a = cmap(ri)
        cdict['red'].append((si, r, r))
        cdict['green'].append((si, g, g))
        cdict['blue'].append((si, b, b))
        cdict['alpha'].append((si, a, a))
    newcmap = matplotlib.colors.LinearSegmentedColormap(name, cdict)
    plt.register_cmap(cmap=newcmap)
    return newcmap

EDIT: я столкнулся с подобной проблемой еще раз, когда некоторые из моих данных варьировались от небольшого положительного значения до большего положительного значение, где очень низкие значения были окрашены в красный цвет вместо белого. Я исправил это, добавив строку Edit #2 в коде выше.

это решение вдохновлено классом с тем же именем от на этой странице

здесь я создаю подкласс Normalize далее следует минимальный пример.

import scipy as sp
import matplotlib as mpl
import matplotlib.pyplot as plt


class MidpointNormalize(mpl.colors.Normalize):
   def __init__(self, vmin, vmax, midpoint=0, clip=False):
        self.midpoint = midpoint
        mpl.colors.Normalize.__init__(self, vmin, vmax, clip)

    def __call__(self, value, clip=None):
        normalized_min = max(0, 1 / 2 * (1 - abs((self.midpoint - self.vmin) / (self.midpoint - self.vmax))))
        normalized_max = min(1, 1 / 2 * (1 + abs((self.vmax - self.midpoint) / (self.midpoint - self.vmin))))
        normalized_mid = 0.5
        x, y = [self.vmin, self.midpoint, self.vmax], [normalized_min, normalized_mid, normalized_max]
        return sp.ma.masked_array(sp.interp(value, x, y))


vals = sp.array([[-5, 0], [5, 10]]) 
vmin = vals.min()
vmax = vals.max()

norm = MidpointNormalize(vmin=vmin, vmax=vmax, midpoint=0)
cmap = 'RdBu_r' 

plt.imshow(vals, cmap=cmap, norm=norm)
plt.colorbar()
plt.show()

результат: pic-1

и тот же пример только с положительными данными!--2-->

pic-2

просто подведем итог-эта норма имеет следующие свойства:

  • середина получит середину цвет.
  • верхний и Нижний диапазоны будут масштабироваться таким же образом, чтобы при правильной цветовой карте насыщенность цвета соответствовала расстоянию от середины.
  • на цветовой панели будут отображаться только цвета, которые появляются на картинке.
  • кажется, работает нормально, даже если vmin больше, чем midpoint (не проверял все крайние случаи, хотя).

Если вы не против разработки соотношения между vmin, vmax и нулем, это довольно простая линейная карта от синего до белого до красного, которая устанавливает белый цвет в соответствии с соотношением z:

def colormap(z):
    """custom colourmap for map plots"""

    cdict1 = {'red': ((0.0, 0.0, 0.0),
                      (z,   1.0, 1.0),
                      (1.0, 1.0, 1.0)),
              'green': ((0.0, 0.0, 0.0),
                        (z,   1.0, 1.0),
                        (1.0, 0.0, 0.0)),
              'blue': ((0.0, 1.0, 1.0),
                       (z,   1.0, 1.0),
                       (1.0, 0.0, 0.0))
              }

    return LinearSegmentedColormap('BlueRed1', cdict1)

формат cdict довольно прост: строки являются точками в градиенте, который создается: первая запись-это значение x (отношение вдоль градиента от 0 до 1), второе-конечное значение для предыдущего сегмента, а третье-начальное значение для следующего сегмента - если вы нужны плавные градиенты, последние два всегда одинаковы. посмотреть документы подробнее.

У меня была аналогичная проблема, но я хотел, чтобы самое высокое значение было полным красным и отсекало низкие значения синего, что делает его похожим на то, что нижняя часть цветовой панели была отрублена. Это сработало для меня (включая дополнительную прозрачность):

def shift_zero_bwr_colormap(z: float, transparent: bool = True):
    """shifted bwr colormap"""
    if (z < 0) or (z > 1):
        raise ValueError('z must be between 0 and 1')

    cdict1 = {'red': ((0.0, max(-2*z+1, 0), max(-2*z+1, 0)),
                      (z,   1.0, 1.0),
                      (1.0, 1.0, 1.0)),

              'green': ((0.0, max(-2*z+1, 0), max(-2*z+1, 0)),
                        (z,   1.0, 1.0),
                        (1.0, max(2*z-1,0),  max(2*z-1,0))),

              'blue': ((0.0, 1.0, 1.0),
                       (z,   1.0, 1.0),
                       (1.0, max(2*z-1,0), max(2*z-1,0))),
              }
    if transparent:
        cdict1['alpha'] = ((0.0, 1-max(-2*z+1, 0), 1-max(-2*z+1, 0)),
                           (z,   0.0, 0.0),
                           (1.0, 1-max(2*z-1,0),  1-max(2*z-1,0)))

    return LinearSegmentedColormap('shifted_rwb', cdict1)

cmap =  shift_zero_bwr_colormap(.3)

x = np.arange(0, np.pi, 0.1)
y = np.arange(0, 2*np.pi, 0.1)
X, Y = np.meshgrid(x, y)
Z = np.cos(X) * np.sin(Y) * 5 + 5
plt.plot([0, 10*np.pi], [0, 20*np.pi], color='c', lw=20, zorder=-3)
plt.imshow(Z, interpolation='nearest', origin='lower', cmap=cmap)
plt.colorbar()