Преобразование частоты света в RGB?


кто-нибудь знает какую-либо формулу для преобразования частоты света в значение RGB?

8 104

8 ответов:

вот подробное объяснение всего процесса преобразования:http://www.fourmilab.ch/documents/specrend/. исходный код включен!

для ленивых парней (как и я), вот реализация на java кода, найденного в @user151323 's answer (то есть, просто простой перевод из кода Паскаля, найденного в Отчет Лаборатории Спектров):

static private double Gamma = 0.80;
static private double IntensityMax = 255;

/** Taken from Earl F. Glynn's web page:
* <a href="http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm">Spectra Lab Report</a>
* */
public static int[] waveLengthToRGB(double Wavelength){
    double factor;
    double Red,Green,Blue;

    if((Wavelength >= 380) && (Wavelength<440)){
        Red = -(Wavelength - 440) / (440 - 380);
        Green = 0.0;
        Blue = 1.0;
    }else if((Wavelength >= 440) && (Wavelength<490)){
        Red = 0.0;
        Green = (Wavelength - 440) / (490 - 440);
        Blue = 1.0;
    }else if((Wavelength >= 490) && (Wavelength<510)){
        Red = 0.0;
        Green = 1.0;
        Blue = -(Wavelength - 510) / (510 - 490);
    }else if((Wavelength >= 510) && (Wavelength<580)){
        Red = (Wavelength - 510) / (580 - 510);
        Green = 1.0;
        Blue = 0.0;
    }else if((Wavelength >= 580) && (Wavelength<645)){
        Red = 1.0;
        Green = -(Wavelength - 645) / (645 - 580);
        Blue = 0.0;
    }else if((Wavelength >= 645) && (Wavelength<781)){
        Red = 1.0;
        Green = 0.0;
        Blue = 0.0;
    }else{
        Red = 0.0;
        Green = 0.0;
        Blue = 0.0;
    };

    // Let the intensity fall off near the vision limits

    if((Wavelength >= 380) && (Wavelength<420)){
        factor = 0.3 + 0.7*(Wavelength - 380) / (420 - 380);
    }else if((Wavelength >= 420) && (Wavelength<701)){
        factor = 1.0;
    }else if((Wavelength >= 701) && (Wavelength<781)){
        factor = 0.3 + 0.7*(780 - Wavelength) / (780 - 700);
    }else{
        factor = 0.0;
    };


    int[] rgb = new int[3];

    // Don't want 0^x = 1 for x <> 0
    rgb[0] = Red==0.0 ? 0 : (int) Math.round(IntensityMax * Math.pow(Red * factor, Gamma));
    rgb[1] = Green==0.0 ? 0 : (int) Math.round(IntensityMax * Math.pow(Green * factor, Gamma));
    rgb[2] = Blue==0.0 ? 0 : (int) Math.round(IntensityMax * Math.pow(Blue * factor, Gamma));

    return rgb;
}

кстати, это прекрасно работает для меня.

общая идея:

  1. использовать функции подбора цветов CEI для преобразования длины волны к цвет XYZ.
  2. конвертировать XYZ в RGB
  3. закрепить компоненты на [0..1] и умножьте на 255, чтобы вписаться в диапазон байтов без знака.

шаги 1 и 2 могут различаться.

есть несколько функций подбора цветов, доступных как таблицы или как аналитические приближения (предложенные @Tarc и @Haochen Се). Таблицы лучше всего, если вам нужен гладкий точный результат.

нет единого цветового пространства RGB. несколько матриц преобразования и различные виды коррекции гаммы могут быть использованы.

Ниже приведен код C#, который я придумал недавно. Он использует линейную интерполяцию по таблице "Cie 1964 standard observer" и sRGB матрица + гамма-коррекция.

static class RgbCalculator {

    const int
         LEN_MIN = 380,
         LEN_MAX = 780,
         LEN_STEP = 5;

    static readonly double[]
        X = {
                0.000160, 0.000662, 0.002362, 0.007242, 0.019110, 0.043400, 0.084736, 0.140638, 0.204492, 0.264737,
                0.314679, 0.357719, 0.383734, 0.386726, 0.370702, 0.342957, 0.302273, 0.254085, 0.195618, 0.132349,
                0.080507, 0.041072, 0.016172, 0.005132, 0.003816, 0.015444, 0.037465, 0.071358, 0.117749, 0.172953,
                0.236491, 0.304213, 0.376772, 0.451584, 0.529826, 0.616053, 0.705224, 0.793832, 0.878655, 0.951162,
                1.014160, 1.074300, 1.118520, 1.134300, 1.123990, 1.089100, 1.030480, 0.950740, 0.856297, 0.754930,
                0.647467, 0.535110, 0.431567, 0.343690, 0.268329, 0.204300, 0.152568, 0.112210, 0.081261, 0.057930,
                0.040851, 0.028623, 0.019941, 0.013842, 0.009577, 0.006605, 0.004553, 0.003145, 0.002175, 0.001506,
                0.001045, 0.000727, 0.000508, 0.000356, 0.000251, 0.000178, 0.000126, 0.000090, 0.000065, 0.000046,
                0.000033
            },

        Y = {
                0.000017, 0.000072, 0.000253, 0.000769, 0.002004, 0.004509, 0.008756, 0.014456, 0.021391, 0.029497,
                0.038676, 0.049602, 0.062077, 0.074704, 0.089456, 0.106256, 0.128201, 0.152761, 0.185190, 0.219940,
                0.253589, 0.297665, 0.339133, 0.395379, 0.460777, 0.531360, 0.606741, 0.685660, 0.761757, 0.823330,
                0.875211, 0.923810, 0.961988, 0.982200, 0.991761, 0.999110, 0.997340, 0.982380, 0.955552, 0.915175,
                0.868934, 0.825623, 0.777405, 0.720353, 0.658341, 0.593878, 0.527963, 0.461834, 0.398057, 0.339554,
                0.283493, 0.228254, 0.179828, 0.140211, 0.107633, 0.081187, 0.060281, 0.044096, 0.031800, 0.022602,
                0.015905, 0.011130, 0.007749, 0.005375, 0.003718, 0.002565, 0.001768, 0.001222, 0.000846, 0.000586,
                0.000407, 0.000284, 0.000199, 0.000140, 0.000098, 0.000070, 0.000050, 0.000036, 0.000025, 0.000018,
                0.000013
            },

        Z = {
                0.000705, 0.002928, 0.010482, 0.032344, 0.086011, 0.197120, 0.389366, 0.656760, 0.972542, 1.282500,
                1.553480, 1.798500, 1.967280, 2.027300, 1.994800, 1.900700, 1.745370, 1.554900, 1.317560, 1.030200,
                0.772125, 0.570060, 0.415254, 0.302356, 0.218502, 0.159249, 0.112044, 0.082248, 0.060709, 0.043050,
                0.030451, 0.020584, 0.013676, 0.007918, 0.003988, 0.001091, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000
            };

    static readonly double[]
        MATRIX_SRGB_D65 = {
             3.2404542, -1.5371385, -0.4985314,
            -0.9692660,  1.8760108,  0.0415560,
             0.0556434, -0.2040259,  1.0572252
        };

    public static byte[] Calc(double len) {
        if(len < LEN_MIN || len > LEN_MAX)
            return new byte[3];

        len -= LEN_MIN;
        var index = (int)Math.Floor(len / LEN_STEP);
        var offset = len - LEN_STEP * index;

        var x = Interpolate(X, index, offset);
        var y = Interpolate(Y, index, offset);
        var z = Interpolate(Z, index, offset);

        var m = MATRIX_SRGB_D65;

        var r = m[0] * x + m[1] * y + m[2] * z;
        var g = m[3] * x + m[4] * y + m[5] * z;
        var b = m[6] * x + m[7] * y + m[8] * z;

        r = Clip(GammaCorrect_sRGB(r));
        g = Clip(GammaCorrect_sRGB(g));
        b = Clip(GammaCorrect_sRGB(b));

        return new[] { 
            (byte)(255 * r),
            (byte)(255 * g),
            (byte)(255 * b)
        };
    }

    static double Interpolate(double[] values, int index, double offset) {
        if(offset == 0)
            return values[index];

        var x0 = index * LEN_STEP;
        var x1 = x0 + LEN_STEP;
        var y0 = values[index];
        var y1 = values[1 + index];

        return y0 + offset * (y1 - y0) / (x1 - x0);
    }

    static double GammaCorrect_sRGB(double c) {
        if(c <= 0.0031308)
            return 12.92 * c;

        var a = 0.055;
        return (1 + a) * Math.Pow(c, 1 / 2.4) - a;
    }

    static double Clip(double c) {
        if(c < 0)
            return 0;
        if(c > 1)
            return 1;
        return c;
    }
}

результат для 400-700 Нм диапазон:

enter image description here

хотя это старый вопрос и уже получает несколько хороших ответов, когда я попытался реализовать такую функциональность преобразования в своем приложении, я не был удовлетворен алгоритмами, уже перечисленными здесь, и сделал свое собственное исследование, которое дало мне хороший результат. Поэтому я собираюсь опубликовать новый ответ.

после некоторых исследований я наткнулся на эту бумагу, Простые Аналитические Аппроксимации к функциям подбора цветов CIE XYZ, и попытался принять ввели многолопастный кусочно-гауссовский алгоритм подгонки в моем приложении. В статье описаны только функции преобразования длины волны в соответствующую значения XYZ, поэтому я реализовал функцию для преобразования XYZ в RGB в цветовом пространстве sRGB и объединил их. Результат фантастический и стоит поделиться:

/**
 * Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
 * monitor
 *
 * @param wavelength wavelength in nm
 * @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
 * 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
 */
public static int wavelengthToRGB(double wavelength){
    double[] xyz = cie1931WavelengthToXYZFit(wavelength);
    double[] rgb = srgbXYZ2RGB(xyz);

    int c = 0;
    c |= (((int) (rgb[0] * 0xFF)) & 0xFF) << 16;
    c |= (((int) (rgb[1] * 0xFF)) & 0xFF) << 8;
    c |= (((int) (rgb[2] * 0xFF)) & 0xFF) << 0;

    return c;
}

/**
 * Convert XYZ to RGB in the sRGB color space
 * <p>
 * The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
 * follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
 * Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
 *
 * @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
 * @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
 */
public static double[] srgbXYZ2RGB(double[] xyz) {
    double x = xyz[0];
    double y = xyz[1];
    double z = xyz[2];

    double rl =  3.2406255 * x + -1.537208  * y + -0.4986286 * z;
    double gl = -0.9689307 * x +  1.8757561 * y +  0.0415175 * z;
    double bl =  0.0557101 * x + -0.2040211 * y +  1.0569959 * z;

    return new double[] {
            srgbXYZ2RGBPostprocess(rl),
            srgbXYZ2RGBPostprocess(gl),
            srgbXYZ2RGBPostprocess(bl)
    };
}

/**
 * helper function for {@link #srgbXYZ2RGB(double[])}
 */
private static double srgbXYZ2RGBPostprocess(double c) {
    // clip if c is out of range
    c = c > 1 ? 1 : (c < 0 ? 0 : c);

    // apply the color component transfer function
    c = c <= 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 1. / 2.4) - 0.055;

    return c;
}

/**
 * A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
 * code here is adopted from the Listing 1 of the paper authored by Wyman et al.
 * <p>
 * Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
 * Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
 *
 * @param wavelength wavelength in nm
 * @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
 */
public static double[] cie1931WavelengthToXYZFit(double wavelength) {
    double wave = wavelength;

    double x;
    {
        double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
        double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
        double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);

        x =   0.362 * Math.exp(-0.5 * t1 * t1)
            + 1.056 * Math.exp(-0.5 * t2 * t2)
            - 0.065 * Math.exp(-0.5 * t3 * t3);
    }

    double y;
    {
        double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
        double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);

        y =   0.821 * Math.exp(-0.5 * t1 * t1)
            + 0.286 * Math.exp(-0.5 * t2 * t2);
    }

    double z;
    {
        double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
        double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);

        z =   1.217 * Math.exp(-0.5 * t1 * t1)
            + 0.681 * Math.exp(-0.5 * t2 * t2);
    }

    return new double[] { x, y, z };
}

мой код написан на Java 8, но это не должно быть трудно перенести его на более низкие версии Java и других языков.

вы говорите о конверсии длина волны к значению RGB.

смотрите сюда, вероятно, ответит на ваш вопрос. У вас есть утилита для этого с исходным кодом, а также некоторые объяснения.

WaveLengthToRGB

Я думаю, что я мог бы также следить за моим комментарием с формальным ответом. Лучший вариант-использовать ВПГ цветовое пространство - хотя оттенок представляет длину волны, это не сравнение один к одному.

Я сделал линейную подгонку известных значений оттенков и частот (выпадая красный и фиолетовый, потому что они простираются так далеко в значениях частоты, что они немного искажают вещи), и я получил грубое уравнение преобразования.

звучит как
частота (в ТГц)=474+(3/4) (угол оттенка (в градусах))

Я пытался посмотреть вокруг и посмотреть, если кто-то придумал это уравнение, но я ничего не нашел по состоянию на май 2010 года.

Способ 1

это немного очищено и протестировано C++11 версия @haochen-xie. Я также добавил функцию, которая преобразует значение 0 в 1 к длине волны в видимом спектре, который можно использовать с этим методом. Вы можете просто положить ниже в один заголовочный файл и использовать его без каких-либо зависимостей. Эта версия будет поддерживаться здесь.

#ifndef common_utils_OnlineStats_hpp
#define common_utils_OnlineStats_hpp

namespace common_utils {

class ColorUtils {
public:

    static void valToRGB(double val0To1, unsigned char& r, unsigned char& g, unsigned char& b)
    {
        //actual visible spectrum is 375 to 725 but outside of 400-700 things become too dark
        wavelengthToRGB(val0To1 * (700 - 400) + 400, r, g, b);
    }

    /**
    * Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
    * monitor
    *
    * @param wavelength wavelength in nm
    * @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
    * 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
    */
    static void wavelengthToRGB(double wavelength, unsigned char& r, unsigned char& g, unsigned char& b) {
        double x, y, z;
        cie1931WavelengthToXYZFit(wavelength, x, y, z);
        double dr, dg, db;
        srgbXYZ2RGB(x, y, z, dr, dg, db);

        r = static_cast<unsigned char>(static_cast<int>(dr * 0xFF) & 0xFF);
        g = static_cast<unsigned char>(static_cast<int>(dg * 0xFF) & 0xFF);
        b = static_cast<unsigned char>(static_cast<int>(db * 0xFF) & 0xFF);
    }

    /**
    * Convert XYZ to RGB in the sRGB color space
    * <p>
    * The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
    * follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
    * Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
    *
    * @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
    * @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
    */
    static void srgbXYZ2RGB(double x, double y, double z, double& r, double& g, double& b) {
        double rl = 3.2406255 * x + -1.537208  * y + -0.4986286 * z;
        double gl = -0.9689307 * x + 1.8757561 * y + 0.0415175 * z;
        double bl = 0.0557101 * x + -0.2040211 * y + 1.0569959 * z;

        r = srgbXYZ2RGBPostprocess(rl);
        g = srgbXYZ2RGBPostprocess(gl);
        b = srgbXYZ2RGBPostprocess(bl);
    }

    /**
    * helper function for {@link #srgbXYZ2RGB(double[])}
    */
    static double srgbXYZ2RGBPostprocess(double c) {
        // clip if c is out of range
        c = c > 1 ? 1 : (c < 0 ? 0 : c);

        // apply the color component transfer function
        c = c <= 0.0031308 ? c * 12.92 : 1.055 * std::pow(c, 1. / 2.4) - 0.055;

        return c;
    }

    /**
    * A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
    * code here is adopted from the Listing 1 of the paper authored by Wyman et al.
    * <p>
    * Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
    * Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
    *
    * @param wavelength wavelength in nm
    * @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
    */
    static void cie1931WavelengthToXYZFit(double wavelength, double& x, double& y, double& z) {
        double wave = wavelength;

        {
            double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
            double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
            double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);

            x = 0.362 * std::exp(-0.5 * t1 * t1)
                + 1.056 * std::exp(-0.5 * t2 * t2)
                - 0.065 * std::exp(-0.5 * t3 * t3);
        }

        {
            double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
            double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);

            y = 0.821 * std::exp(-0.5 * t1 * t1)
                + 0.286 * std::exp(-0.5 * t2 * t2);
        }

        {
            double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
            double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);

            z = 1.217 * std::exp(-0.5 * t1 * t1)
                + 0.681 * std::exp(-0.5 * t2 * t2);
        }
    }

};

} //namespace

#endif

участок цветов от 375nm до 725nm выглядит так ниже:

enter image description here

одна проблема с этим методом заключается в том, что он работает только между 400-700nm и вне этого он резко падает до Черного. Другая проблема-более узкий синий цвет.

для сравнения, ниже приведены цвета из Vision FAQ по адресу maxmax.com:

enter image description here

я использовал это для визуализации карты глубины, где каждый пиксель представляет значение глубины в метрах, и это выглядит так ниже:

enter image description here

Способ 2

это реализовано как часть bitmap_image библиотека только для одного заголовка файла от Aeash Partow:

inline rgb_t convert_wave_length_nm_to_rgb(const double wave_length_nm)
{
   // Credits: Dan Bruton http://www.physics.sfasu.edu/astro/color.html
   double red   = 0.0;
   double green = 0.0;
   double blue  = 0.0;

   if ((380.0 <= wave_length_nm) && (wave_length_nm <= 439.0))
   {
      red   = -(wave_length_nm - 440.0) / (440.0 - 380.0);
      green = 0.0;
      blue  = 1.0;
   }
   else if ((440.0 <= wave_length_nm) && (wave_length_nm <= 489.0))
   {
      red   = 0.0;
      green = (wave_length_nm - 440.0) / (490.0 - 440.0);
      blue  = 1.0;
   }
   else if ((490.0 <= wave_length_nm) && (wave_length_nm <= 509.0))
   {
      red   = 0.0;
      green = 1.0;
      blue  = -(wave_length_nm - 510.0) / (510.0 - 490.0);
   }
   else if ((510.0 <= wave_length_nm) && (wave_length_nm <= 579.0))
   {
      red   = (wave_length_nm - 510.0) / (580.0 - 510.0);
      green = 1.0;
      blue  = 0.0;
   }
   else if ((580.0 <= wave_length_nm) && (wave_length_nm <= 644.0))
   {
      red   = 1.0;
      green = -(wave_length_nm - 645.0) / (645.0 - 580.0);
      blue  = 0.0;
   }
   else if ((645.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
   {
      red   = 1.0;
      green = 0.0;
      blue  = 0.0;
   }

   double factor = 0.0;

   if ((380.0 <= wave_length_nm) && (wave_length_nm <= 419.0))
      factor = 0.3 + 0.7 * (wave_length_nm - 380.0) / (420.0 - 380.0);
   else if ((420.0 <= wave_length_nm) && (wave_length_nm <= 700.0))
      factor = 1.0;
   else if ((701.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
      factor = 0.3 + 0.7 * (780.0 - wave_length_nm) / (780.0 - 700.0);
   else
      factor = 0.0;

   rgb_t result;

   const double gamma         =   0.8;
   const double intensity_max = 255.0;

   #define round(d) std::floor(d + 0.5)

   result.red   = static_cast<unsigned char>((red   == 0.0) ? red   : round(intensity_max * std::pow(red   * factor, gamma)));
   result.green = static_cast<unsigned char>((green == 0.0) ? green : round(intensity_max * std::pow(green * factor, gamma)));
   result.blue  = static_cast<unsigned char>((blue  == 0.0) ? blue  : round(intensity_max * std::pow(blue  * factor, gamma)));

   #undef round

   return result;
}

график длины волны от 375-725нм выглядит следующим образом:

enter image description here

Так это более годно к употреблению в 400-725нм. Когда я визуализирую ту же карту глубины, что и в методе 1, я получаю ниже. Существует очевидная проблема этих черных строки, которые я думаю, указывает на незначительную ошибку в этом коде, который я не смотрел более глубоко. Также Фиалки немного уже в этом методе, который вызывает меньше контраста для далеких объектов.

enter image description here